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préparée au sein LAMA, Université Savoie Mont Blanc
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Résumé

Géométrie Tropicale et Systèmes Polynomiaux

Les systèmes polynomiaux réels sont omniprésents dans de nombreux domaines des math-
ématiques pures et appliquées. A. Khovanskii a fourni une borne fewnomiale supérieure sur le
nombre de solutions positives non-dégénérées d’un système polynomial réel de n équations à n
variables qui ne dépend que du nombre de monômes apparaissant dans les équations. Cette dernière
borne a été récemment améliorée par F. Bihan et F. Sottile, mais la borne résultante peut être
encore améliorée, même dans certains cas simples.

Le but de ce travail est d’aborder trois problèmes importants dans la théorie des Fewnomials.
Considérons une famille de systèmes polynomiaux réels avec une structure donnée (par exemple,
support ou le nombre de monômes). Un problème est de trouver de bonnes bornes supérieures pour
leurs nombres de solutions réelles (ou positives). Un autre problème est de construire des systèmes
dont le nombre de solutions réelles (ou positives) sont proches de la meilleure borne supérieure
connue. Lorsqu’une borne supérieure optimale est bien connue, qu’est ce qu’on peut dire dans le
cas où elle est atteinte?

Dans cette thèse, nous affinons un résultat de M. Avendaño en démontrant que le nombre de
points d’intersection réels d’une droite réelle avec une courbe réelle plane définie par un polynôme
avec au plus t monômes est soit infini ou ne dépasse pas 6t − 7. En outre, on montre que notre
borne est optimale pour t = 3 en utilisant les dessins d’enfant réels de Grothendieck. Cela montre
que le nombre maximal de points d’intersection réels d’une droite réelle avec une courbe trinomiale
réelle plane est onze.

Nous considérons ensuite le problème de l’estimation du nombre maximal de points d’intersection
transverses positifs d’une courbe plane trinomiale et d’une courbe plane t-nomiale. T-Y Li, J.-
M. Rojas et X. Wang ont montré que ce nombre est borné par 2t − 2, et récemment P. Koiran,
N. Portier et S. Tavenas ont trouvé la borne supérieure 2t3/3 + 5t. Nous fournissons la borne
supérieure 3 · 2t−2 − 1 qui est optimale pour t = 3 et est la plus petite pour t = 4, . . . , 9. Ceci est
réalisé en utilisant la notion de dessins d’enfant réels. De plus, nous étudions en détail le cas t = 3
et nous donnons une restriction sur les supports des systèmes atteignant la borne optimale cinq.

Un circuit est un ensemble de n+2 points dans Rn qui sont minimalement affinement dépendants.
Il est connu qu’un système supporté sur un circuit a au plus n+1 solutions positives non dégénérées,
et que cette borne est optimale. Nous utilisons les dessins d’enfant réels et le patchwork combi-
natoire de Viro pour donner une caractérisation complète des circuits supportant des systèmes
polynomiaux avec le nombre maximal de solutions positives non dégénérées.

Nous considérons des systèmes polynomiaux de deux équations à deux variables avec cinq
monômes distincts au total. Ceci est l’un des cas les plus simples où la borne supérieure optimale
sur le nombre de solutions positives non dégénérées n’est pas connue. F. Bihan et F. Sottile ont
prouvé que cette borne optimale est majorée par quinze. D’autre part, les meilleurs exemples
avaient seulement cinq solutions positives non dégénérées.

Nous considérons des systèmes polynomiaux comme avant, mais défini sur le corps des séries de
Puiseux réelles généralisées et localement convergentes. Les images par l’application de valuation
des solutions d’un tel système sont des points d’intersection de deux courbes tropicales planes. En
utilisant des intersections non transverses des courbes tropicales planes, on obtient une construc-
tion d’un système polynomial réel comme ci-dessus ayant sept solutions positives non dégénérées.

Mots clés— Géométrie Algébrique Réelle, Théorie des Fewnomials, Géométrie Tropicale,
Systèmes Polynomiaux



Abstract

Tropical Geometry and Polynomial Systems

Real polynomial systems are ubiquitous in many areas of pure and applied mathematics. A.

Khovanskii provided a fewnomial upper bound on the number of non-degenerate positive solutions

of a real polynomial system of n equations in n variables that depends only on the number of

monomials appearing in the equations. The latter bound was recently improved by F. Bihan and

F. Sottile, but the resulting bound still has room for improvement, even in some simple cases.

The aim of this work is to tackle three main problems in Fewnomial theory. Consider a family

of real polynomial systems with a given structure (for instance, supports or number of monomials).

One problem is to find good upper bounds for their numbers of real (or positive) solutions. Another

problem is to construct systems whose numbers of real (or positive) solutions are close to the best

known upper bound. When a sharp upper bound is known, what can be said about reaching it?

In this thesis, we refine a result by M. Avendaño by proving that the number of real intersection

points of a real line with a real plane curve defined by a polynomial with at most t monomials

is either infinite or does not exceed 6t − 7. Furthermore, we prove that our bound is sharp for

t = 3 using Grothendieck’s real dessins d’enfant. This shows that the maximal number of real

intersection points of a real line with a real plane trinomial curve is eleven.

We then consider the problem of estimating the maximal number of transversal positive in-

tersection points of a trinomial plane curve and a t-nomial plane curve. T-Y Li, J.-M. Rojas and

X. Wang showed that this number is bounded by 2t − 2, and recently P. Koiran, N. Portier and

S. Tavenas proved the upper bound 2t3/3 + 5t. We provide the upper bound 3 · 2t−2 − 1 that

is sharp for t = 3 and is the tightest for t = 4, . . . , 9. This is achieved using the notion of real

dessins d’enfant. Moreover, we study closely the case t = 3 and give a restriction on the supports

of systems reaching the sharp bound five.

A circuit is a set of n + 2 points in Rn that is minimally affinely dependent. It is known

that a system supported on a circuit has at most n + 1 non-degenerate positive solutions, and

that this bound is sharp. We use real dessins d’enfant and Viro’s combinatorial patchworking to

give a full characterization of circuits supporting polynomial systems with the maximal number of

non-degenerate positive solutions.

We consider polynomial systems of two equations in two variables with a total of five distinct

monomials. This is one of the simplest cases where the sharp upper bound on the number of non-

degenerate positive solutions is not known. F. Bihan and F. Sottile proved that this sharp bound

is not greater than fifteen. On the other hand, the best examples had only five non-degenerate

positive solutions. We consider polynomial systems as before, but defined over the field of real

generalized locally convergent Puiseux series. The images by the valuation map of the solutions

of such a system are intersection points of two plane tropical curves. Using non-transversal inter-

sections of plane tropical curves, we obtain a construction of a real polynomial system as above

having seven non-degenerate positive solutions.

Keywords— Real Algebraic Geometry, Theory of Fewnomials, Tropical Geometry, Polyno-

mial Systems
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Chapter 1

Introduction

One of the fundamental problems in mathematics is solving real polynomial equations since poly-

nomial systems arise naturally and ubiquitously in mathematics and many of its applications.

We see them appearing in such fields as control theory [Byr89], kinematics [BR90], chemistry

[GH02, MFR+16] and many others where it is mainly the real solutions that matter. In this intro-

duction we give a brief overview on solving polynomial equations and state the main results of this

thesis. For a more detailed exposition on solving polynomial equations, see for example [Sot11]

or [Stu02].

1.1 Univariate polynomials

Galois theory shows that for a univariate polynomial f with real coefficients and degree less or

equal to four, there exists a general formula that explicitly determines the complex roots of f in

terms of its coefficients. However this statement is false if f has degree larger than four. This

means that computing the roots of high-degree polynomials is not an easy task. Nevertheless, there

are many methods and results devoted especially to this problem (see for example [Stu02]). By

the Fundamental theorem of algebra, any univariate polynomial f has at least one complex root.

Moreover, the number of its complex roots (counted with multiplicities) is equal to its degree.

Unfortunately, in general the degree is a bad estimate for the number of real roots of f e.g.

1− x100 has 98 non-real roots and only two real ones. Descartes’ rule of sign [Des97], which dates

back to 1637, is one of the earliest results that gives a more accurate estimation for the number of

real roots of f . Suppose that we write the terms of f in increasing order of their exponents,

f(x) = b0x
k0 + b1x

k1 + · · ·+ bmx
km , (1.1.1)

where bi 6= 0 and k0 < · · · < km.

Theorem 1.1 (Descartes’ rule of sign). The number r of isolated positive roots of f , counted with

multiplicity, is at most the number of sign changes of its coefficients,

r ≤ {i | 1 ≤ i ≤ m and bi−1bi < 0}.

Theorem 1.1 also holds true for univariate polynomials with real exponents. The immediate

consequence for this rule is that the number of positive solutions of f is bounded from above by
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m. Moreover, replacing x by −x and applying Theorem 1.1 to the resulting polynomial gives a

similar estimation for the number of negative roots of f . Therefore, the number of non-zero real

roots of f is less or equal to 2m.

It is important to note that Descartes’ rule of sign, and thus the resulting Descartes’ bound, is

independent of the degree. This naturally brings about the question of generalizing Theorem 1.1

to a polynomial system.

1.2 Sparse polynomial systems

Consider a real polynomial system

f1(z1, . . . , zn) = · · · = fn(z1, . . . , zn) = 0. (1.2.1)

In general, we look for solutions of (1.2.1) in the complex torus (C∗)n since solutions in coordinate

hyperplanes are solutions in complex tori of smaller dimensions of truncated systems. A solution

ζ ∈ Cn of (1.2.1) is non-degenerate if the Jacobian of (1.2.1) evaluated at ζ has full rank.

Non-degenerate solutions are easier to manipulate since their number will not decrease after any

“slight” perturbation of the coefficients of the associated system.

1.2.1 Polyhedral bounds

Denote by di the total degree of fi. Bézout’s fundamental Theorem [Béz79] states that the number

of non-degenerate complex solutions of (1.2.2) is less or equal to d1 · · · dn. Moreover, this bound

is sharp. Polynomial systems that arise naturally may have some special structure, for instance in

terms of disposition of the exponent vectors or their number (cf. [Sot11]). However, a great part

of this combinatorial data is disregarded when using the degree to bound the number of complex

solutions, and thus the Bézout bound can be rough. In fact, there exist bounds that depend on

the polyhedral structure associated to the polynomial system that we describe now.

To any w = (w1, . . . , wn) ∈ Zn is associated a monomial zw ∈ R[z±1
1 , . . . , z±1

n ]. Consider a

Laurent polynomial f ∈ R[z±1
1 , . . . , z±1

n ] written as

f(z) :=
∑
w∈W

cwz
w, (1.2.2)

where cw 6= 0 for all w ∈ W. The setW is called the support of f . The support of a system (1.2.1)

is the union of the supports of f1, . . . , fn. The Newton polytope of f is the convex hull ∆W
of W. Write Vol(∆) for the Euclidean volume of a polytope ∆ ⊂ Rn. We have the following

fundamental result due to A. Kushnirenko [Kus75].

Theorem 1.2 (Kushnirenko). If (1.2.1) has support W, then it has at most n! Vol(∆W) isolated

solutions in (C∗)n, and exactly this number if the polynomials are generic among systems with

support W.

D. N. Bernstein [Ber75] refined this result taking the individual supports into account. Let

Wi denotes the support of the polynomial fi appearing in (1.2.1). The Minkowski sum of the

convex hulls of Wi for i = 1, . . . , n, is a pointwise sum

∆W1 + · · ·+ ∆Wn = {w1 + · · ·+ wn | w1 ∈ ∆W1 , . . . , wn ∈ ∆Wn}.
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Minkowski (see [Ewa12]) showed that given convex bodies K1, . . . ,Kn in Rn and positive numbers

λ1, . . . , λn, the function Vol(λ1K1 + · · · + λnKn) is a homogeneous polynomial in λ1, . . . , λn of

degree n, so there exist coefficients V (Ki1 , . . . ,Kin) for i1, . . . , in ∈ [n] such that

Vol(λ1K1 + · · ·+ λnKn) =
∑

i1,...,in ∈[n]

V (Ki1 , . . . ,Kin)λi1 · · ·λin . (1.2.3)

The mixed volume, MV(K1, . . . ,Kn) of K1, . . . ,Kn is V (K1, . . . ,Kn). Now we state Bernstein’s

important generalization of Kushnirenko’s Theorem.

Theorem 1.3 (Bernstein). A system of n polynomials in n variables where the polynomials have

support W1, . . . ,Wn has at most MV (∆W1
, . . . ,∆Wn

) isolated solutions in (C∗)n, and exactly this

number when the polynomials are generic for their given supports.

It is worth noting that a non-degenerate solution of a system is an isolated one, thus both

Kuschnirenko and Bernstein Theorems give upper bounds for the number of non-degenerate so-

lutions in (C∗)n of a polynomial system. Although the degree and previous polyhedral bounds

hold true for the number of non-degenerate solutions in (R∗)n as well, the resulting bounds are

not always sharp. This typically happens when the total support W of (1.2.1) has few elements

comparatively to ∆W ∩ Zn.

1.2.2 Fewnomial bounds

Denote by W ⊂ Rn the support of (1.2.1). Multivariate generalizations of Descartes’ bound (The-

orem 1.1) for systems of multivariate polynomials are called Fewnomial bounds1. A particular

attention is paid to the positive solutions of (1.2.1), which are the solutions contained in the pos-

itive orthant of Rn. Indeed, assume that there exists a sharp upper bound NW on the number of

non-degenerate positive solutions of (1.2.1) that depends only on W. Then this NW also bounds

the number of solutions contained in any other orthant, and thus (1.2.1) will not have more than

2nNW solutions in (R∗)n. Recall that Descartes showed that we have NW = |W|−1 for n = 1, but

still, before Khovanskii’s book [Kho91], it was not clear that such NW even exists for any n ≥ 2.

Theorem 1.4 (Khovanskii). A system of n real polynomials in n variables involving n + k + 1

distinct monomials has fewer than

2(n+k
2 )(n+ 1)n+k. (1.2.4)

non-degenerate positive solutions.

The existence of a bound on the number of non-degenerate positive solutions that is indepen-

dent of the degrees of the polynomials was revolutionary and is the main point of Khovanskii’s

result. It also confirms Kushnirenko’s principle that the topological complexity of objects, de-

fined by real-valued polynomials, can be controlled by the complexity of the definition of these

polynomials rather than by degrees or by some characteristics of Newton polyhedra of equations.

Also, the bound in Theorem 1.4 is not sharp. In fact, Theorem 1.4 is a particular case of a

Khovanskii’s more general result involving solutions in Rn of polynomial functions in logarithms

of the coordinates and monomials (see [Kho91]). For example, when k = 0, the support W of the

system is a simplex, and there will be at most one real solution, which is smaller than 2(n2)(n+1)n.

1The term “Fewnomial” was coined by A. Kushnirenko, where he replaced the term “poly” of the word
“polynomial”, by the term “Few” (c.f. [Kus08])
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Although it was commonly believed that Khovanskii’s bound (1.2.4) was far from being sharp,

improving it turns out to be not an easy task.

Fewnomial theory was mainly initiated by Kushnirenko’s famous conjecture which was formu-

lated in the late 70’s as a tentative generalization of Descartes’ bound.

Conjecture 1.5 (Kushnirenko). A system of n real polynomials in n variables, where the polyno-

mials have supports W1, . . . ,Wn, has at most

n∏
i=1

(|Wi| − 1)

non-degenerate positive solutions.

Constructing polynomial systems reaching Kushnirenko’s conjectured bound is not a difficult

task. Namely, such a construction might be for instance a system

gi(zi) = 0, for i = 1, . . . , n

consisting of univariate polynomials, where each gi has mi terms and mi − 1 non-degenerate

positive solutions (Descartes’ bound). In fact, the lack of efficient construction methods at the

time instigated Kushnirenko to establish his conjecture.

1.3 Results prior to this thesis

After the famous Khovanskii’s Theorem, there were many recent contributions dedicated to the

theory of Fewnomials, (c.f. [Sot11] for a survey). In this section, we give but a few of the many

results developed in this millennia. Most of these results are further investigated and in some cases

improved in this thesis.

1.3.1 Around Khovanskii’s bound

Consider a real polynomial system

f1(z) = · · · = fn(z) = 0 (1.3.1)

in n variables supported on a set W ⊂ Zn such that |W| = n+ k+ 1 for some k ≥ 1. In [BS07], F.

Bihan and F. Sottile significantly reduced Khovanskii’s fewnomial bound (1.2.4) by showing that

there are fewer than
e2 + 3

4
2(k2)nk (1.3.2)

non-degenerate positive solutions to (1.3.1). The method they used consists of reducing the original

system to a system of k equations in k variables, called Gale transform. This Gale transform

depends upon the vector configuration “Gale” dual to the exponents of the monomials in the

original system (see [BS08]). This reduction gives that an upper bound on the Gale transform

also holds true for the number of solutions of (1.3.1). The bound in (1.3.2) also holds true for

polynomials with real exponents. Moreover, the significance of it is that (1.3.2) is asymptotically

sharp in the sense that for fixed k, there are systems with O(nk) positive solutions [BRS08] .

The constant e2+3
4 appearing in (1.3.2) is artificial, its purpose is only to bound from above a

more complicated expression. Moreover, the authors in [BS07] believe that the term 2(k2) in (1.3.2)
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is considerably overstated. In fact, when k = 2, this smaller bound (1.3.2) is actually 2n2 +

b (n+3)(n+1)
2 c, and when n = 2 it is 15. Note that when plugging n = k = 2 in (1.2.4), we obtain

26 ·34 = 5184. Although the new bound 15 is a considerably smaller fewnomial bound for a system

where n = k = 2, the authors of [BS07] maintain that the sharp bound is still smaller. The

case n = k = 2 is the first case where we do not know much about. In fact, prior to this thesis,

the first known construction, giving a lot of non-degenerate positive solutions of a system of two

polynomials in two variables with five monomials was essentially that of B. Haas (1.3.5). Such a

construction gives five non-degenerate positive solutions, and shows that the sharp upper bound

on the number of non-degenerate positive solutions is greater or equal to 5. Later on, we will call

a system of two equations in two variables with 5 distinct monomials a system of type n = k = 2.

1.3.2 Using combinatorial patchworking

Consider a system

f1,t(z) = · · · = fn,t(z) = 0, (1.3.3)

where each polynomial of (1.3.3) is obtained from a polynomial
∑

w cwz
w of (1.3.1) by multiplying

each monomial cwz
w by some real power of t, where t is a positive parameter that will be taken

close to zero. Let V (fi,t) denote the zero set of fi,t in Rn. For any ε ∈ {±1}n, consider the orthant

(R>0)ε := {x ∈ Rn | xiεi > 0 i = 1, . . . , n},

and let Vε(fi,t) be the intersection of V (fi,t) with (R>0)ε.

O. Viro’s Theorem states that one can construct combinatorially a space Qε together with a

simplicial complex Zε ⊂ Qε such that the couple (Qε, Zε) is homeomorphic to ((R>0)ε, Vε(fi,t)) for

t > 0 small enough. From this, one can recover (up to homeomorphisms) the whole hypersurface

V (fi,t) (for t > 0 small enough) by gluing its different parts together with their ambient spaces.

This was generalized by B. Sturmfels [Stu94] for any complete intersection V (f1,t)∩· · ·∩V (fs,t),

with s ≤ n, given that the exponents of t are “sufficiently generic”. When s = n, this method

can be used to construct systems with many non-degenerate positive solutions and given supports.

Recently, F. Bihan [Bih14] gave a bound on the number of non-degenerate real solutions that are

constructed using Sturmfels’ generalization of Viro’s Theorem. This bound is given by the so-called

discrete mixed volume of the supports of fi,t. In fact, he proved that this bound is smaller than the

one given in Kushnirenko’s conjecture (see Subsection 1.3.4). When n = 2 and k = 1, the discrete

mixed volume is not larger than 3 and the corresponding bound is sharp (see Subsection 1.3.3).

When n = k = 2, it is easy to compute that the discrete mixed volume is not larger than 6 (see

Lemma 6.4 in Chapter 6), and it is not known if the corresponding bound is sharp.

1.3.3 Systems supported on a circuit

One of the first non-trivial cases arises when n ≥ 2 and k = 1, in which case the support W
of (1.3.1) is a set of n + 2 points in Rn. F. Bihan [Bih07] proved that any polynomial system

supported on such W has at most n+ 1 non-degenerate positive solutions and that this bound is

sharp. Moreover, if this bound is reached, then W is minimally affinely dependent, which means

that it is a circuit in Rn. Polynomial systems supported on a circuit in Zn whose all non-degenerate

complex solutions are positive have been studied in [Bih15] (such systems are called maximally

positive). As a main result, it is given for any positive integer n a finite list of circuits in Zn that



1.3. Results prior to this thesis 14

can support maximally positive systems up to the obvious action of the group of invertible integer

affine transformations of Zn.

Also for the circuit case, F. Bihan and A. Dickenstein [BD16] presented the first multivariate

version of Descartes’ rule of signs to bound the number of positive real solutions of a system

supported on a circuit, in terms of the sign variation of a sequence associated to both the exponent

vectors and the given coefficients. In fact, it is also shown that the bound they gave is sharp and

is related to the signature of the circuit.

The first time that Grothendieck’s real dessins d’enfant, which are graphs embedded on the

Riemann sphere, were used in the fewnomial context was due to F. Bihan [Bih07]. Namely, he uses

dessins d’enfant to show the sharpness of the bound n+ 1 for the number of positive solutions of

a system supported on a circuit W ⊂ Rn. He also proves using the same technique the sharpness

of bounds for the number of real solutions of such systems. As it turns out, if one can reduce a

fewnomial system to a rational polynomial function CP 1 → CP 1, then one can hope to use real

dessins d’enfant in a fruitful way to closely study the original system. This technique gives an

interesting point of view on constructing polynomial systems with a large number of real solutions

(see Chapter 3), characterizing such systems (see Chapter 5) and even bounding the number of

positive solutions of sparse polynomial systems (see Chapter 4).

Sturmfels’ version of Viro’s combinatorial patchworking is yet another effective technique from

real algebraic geometry that can be used to construct polynomial systems with many real solutions.

This generalisation [Stu94] is for complete intersections of real algebraic hypersurfaces. Among

many other implementations in fewnomials, it was used by K. Phillipson and J.-M. Rojas [PR13,

proof of Lemma 1.8] to construct a polynomial system over local fields supported on a circuit that

has n+ 1 positive solutions.

1.3.4 Around Kuschnirenko’s conjecture

Consider the system (1.3.1), and for i = 1, . . . , n, denote by mi the number of points contained in

the support of fi. Recall that Kushnirenko’ Conjecture 1.5 states that (1.3.1) cannot have more

than
n∏
i=1

(mi − 1)

non-degenerate positive solutions.

1.3.4.1 First counterexamples

The conjectural bound is not a bound on the number of isolated positive solutions. W. Fulton

gave a counterexample in [Ful13] that goes as follows (see also [Stu02]). Consider the system

m∏
i=1

(z1 − i)2 +

m∏
i=1

(z2 − i)2 = 0, z1(z3 − 1) = 0, z2(z3 − 1) = 0, (1.3.4)

where m ≥ 5. Kushnirenko’s Conjecture predicts that such a system has at most (4m+ 1− 1)(2−
1)(2 − 1) = 4m real positive solutions. However there are m2 positive solutions of (1.3.4) of the

form (i, j, 1), for i, j ∈ N∗ between 1 and m.

A particular case of A. Kuchnirenko’s conjecture states that when n = 2 and m1 = m2 = 3,

the system (1.3.1) has at most four non-degenerate positive solutions. In an effort to disprove this

conjecture, Haas had shown in [Haa02] that
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10x106 + 11y53 − 11y = 10y106 + 11x53 − 11x = 0 (1.3.5)

has five non-degenerate positive solutions. Konstantin A. Sevastyanov, a colleague of Kushnirenko,

had found a similar counter-example much earlier. Unfortunately, this counterexample does not

seem to have been recorded and, tragically, Sevastyanov died before publishing his counterexample.

It was later shown in [LRW03] using a case by case analysis that when n = 2 and m1 = m2 = 3,

the sharp bound on the number of non-degenerate positive solutions is five. Moreover, it was proved

in the same paper that if this bound is reached, then the Minkowski sum of the associated Newton

polytopes ∆1 and ∆2 is an hexagon.

A simpler polynomial system

x6 + (44/31)y3 − y = y6 + (44/31)x3 − x = 0, (1.3.6)

that also has five positive solutions was discovered by A. Dickenstein, J.-M. Rojas, K. Rusek and

J. Shih [DRR07]. In addition, they showed that such systems are rare in the following sense. They

study the discriminant variety of coefficients spaces of the polynomial system

x2d + ayd − y = y2d + bxd − x = 0, (1.3.7)

with parameters (a, b, d), and show that the chambers (connected components of the complement)

containing systems with the maximal number of positive solutions are small.

1.3.4.2 A trinomial and a t-nomial

Real polynomial systems in two variables

f = g = 0, (1.3.8)

where f has t ≥ 3 non-zero terms and g has three non-zero terms have been studied by T.Y. Li,

J.-M. Rojas and X. Wang [LRW03]. They showed that such a system, allowing real exponents, has

at most 2t − 2 isolated positive solutions. The idea is to substitute one variable of the trinomial

in terms of the other, and thus one can reduce the system to an analytic function in one variable

h(x) =

t∑
i=1

aix
ki(1− x)li ,

where all the coefficients and exponents are real. The number of positive solutions of (1.3.8) is

equal to that of h = 0 contained in ]0, 1[. The main techniques used in [LRW03] are an extension

of Rolle’s Theorem and a recursion involving derivatives of certain analytic functions. In fact, the

results of Li, Rojas and Wang [LRW03] are more general. Consider a polynomial system

f1 = · · · = fn = 0 (1.3.9)

in n variables, where the functions f1, . . . , fn−1 are trinomials and fn has t distinct monomials.

The authors in [LRW03] show that (1.3.9) has at most n+n2 + · · ·+nt−1 non-degenerate positive

solutions.
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The exponential upper bound 2t − 2 on the number of positive solutions of (1.3.8) has been

recently refined by P. Koiran, N. Portier and S. Tavenas [KPT15b] into a polynomial one. They

considered an analytic function in one variable

t∑
i=1

m∏
j=1

f
αi,j
j , (1.3.10)

where all fj are real polynomials of degree at most d and all the powers of fj are real. Using the

Wronskian of analytic functions, it was proved that the number of positive roots of (1.3.10) in an

interval I (assuming that fj(I) ⊂]0,+∞[) is equal to t3md
3 +2tmd+ t. As a particular case (taking

m = 2, d = 1 and I =]0, 1[), they obtain that h(x) =
∑t

j=1 aix
ki(1 − x)li has at most 2t3/3 + 5t

roots in I.

1.3.4.3 A plane curve and a line

Interestingly, when the trinomial g of (1.3.8) is a linear polynomial, then the sharp bound on the

number of non-degenerate real solutions of (1.3.8) is a linear function in t.

Namely, M. Avendaño showed in [Ave09] that such a system has either an infinite number

or at most 6t − 6 solutions in (R∗)2, where the latter ones are counted with multiplicities. In

particular, he proved that the number of non-degenerate positive solutions of the latter system is

at most 2t − 2. The method used in [Ave09] consists of substituting z2 by az1 + b in (1.3.8) for

some non-zero real numbers a and b. This way, with the help of Descartes’ rule of sign applied to

the resulting univariate polynomial, one eventually obtains the bound 2t− 2.

1.3.5 Around a polynomial-fewnomial conjecture

A. Kushnirenko also formulated the following conjecture (see [Kus08] for more background). Con-

sider a system

f(x, y) = g(x, y) = 0 (1.3.11)

of two equations in two variables, where g is a polynomial with t distinct monomial terms, and f

is a polynomial of degree d.

Conjecture 1.6. The system (1.3.11) has at most N(d, t) non-degenerate positive solutions, where

N(d, t) is a function depending only on the numbers d and t.

Sevostyanov showed in 1978 that such N(d, t) exists. However, his result (together with his

counterexample to Kushnirenko’s conjecture) was never published. According to [Sot11], this result

was the inspiration for Khovanskii to develop his theory of fewnomials.

Clearly, by Khovanskii and Bihan-Sottile bounds, this N(d, t) exists, however since (1.3.11)

is a very particular case of the generic system (1.2.1), bounds (1.2.4) and (1.3.2) (which are

exponential in d and t) might be too large. M. Avendaño’s previously-discussed bound [Ave09]

shows that N(1, t) ≤ 2t− 2, which turns out to be a sharp bound for t = 3 (see [BEH15]).

The smallest bound so far for any values d and t was discovered by P. Koiran, N. Portier and

S. Tavenas [KPT15a]. They showed that (1.3.11) has only O(d3t + d2t3) real solutions when it

has a finite number of real solutions. Moreover, if the set of real solutions is infinite then it has at

most O(d3t+ d2t3) connected components.
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1.4 Results of the thesis

We divide our main results into four chapters.

1.4.1 Chapter 3: Intersecting a sparse plane curve and a line

Chapter 3 is a joint work with F. Bihan [BEH15]. Consider a system

f(x, y) = ax+ b− y = 0, (1.4.1)

where f ∈ R[x, y], has t non-zero terms. In Chapter 3, all solutions in (R∗)2 are counted with

multiplicities. This reduces to counting the number of real roots of a polynomial f(x, ax + b),

where a, b ∈ R and f ∈ R[x, y] has at most t non-zero terms. Substituting y by ax + b in the

polynomial f reduces the problem of computing real solutions of (1.4.1) to computing the real

roots of f(x, ax+ b). M. Avendaño showed in [Ave09, Theorem 1.1] that (1.4.1) has at most 6t− 4

real solutions counted with multiplicities except for the possible roots 0 and −b/a. The question

of optimality was not addressed in [Ave09] and this was the motivation for the present work. We

prove the following result.

Theorem 1.7. Let f ∈ R[x, y] be a polynomial with at most t non-zero terms and let a, b be any

real numbers. Assume that the polynomial g(x) = f(x, ax+ b) is not identically zero. Then g has

at most 6t − 7 real roots counted with multiplicities except for the possible roots 0 and −b/a that

are counted at most once.

The methods used in proving the latter results are elementary, and constitute a refined version

of those used in [Ave09]. This might look as a small improvement of the main result of [Ave09].

In fact, this refinement is a non-trivial one, and the bound in Theorem 1.7 is optimal at least for

t = 3.

Theorem 1.8. The maximal number of real intersection points of a real line with a real plane

curve defined by a polynomial with three non-zero terms is eleven.

Explicitly, the real curve with equation

− 0.002404 xy18 + 29 x6y3 + x3y = 0 (1.4.2)

intersects the real line y = x+ 1 in precisely eleven points in R2.

The strategy to construct this example is first to deduce from the proof of Theorem 1.7 some

necessary conditions on the monomials of the desired equation. Then, the use of real Grothendieck’s

dessins d’enfant in a novel way helps to test the feasibility of certain monomials, since manipulating

this method gives a clear representation of the topology of the graph of x 7→ f(x, x+1). Ultimately,

computer experimentations lead to the precise equation (1.4.2).
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Figure 1.1: The blue curve represents the graph of x 7→ f(x, x + 1), and the red line
represents the first-coordinate axis. (Some parts of the curve is stretched vertically on
purpose for more clarity.)

1.4.2 Chapter 4: Positive intersection points of a trinomial and a t-
nomial curves

Consider a system (1.3.8) where f has t ≥ 3 non-zero terms and g has three non-zero terms.

Assume that the latter system has a finite number of solutions. Let S(3, t) denote the maximal

number of non-degenerate positive solutions a system (1.3.8) can have. We prove the following

result in Section 4.2.

Theorem 1.9. We have S(3, t) ≤ 3 · 2t−2 − 1.

Note that since the number of positive solutions of two trinomials in two variables is bounded

by five (see [LRW03]), the bound S(3, t) is sharp for t = 3. Moreover, for t = 4, . . . , 9, this new

bound is smaller than the bounds 2t − 2 and 2t3/3 + 5t, obtained in [LRW03] and [KPT15b]

respectively, and shows for example that 6 ≤ S(3, 4) ≤ 11.
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Recall that substituting one variable of the trinomial g of (1.3.8) in terms of the other reduces

the system to an analytic function in one variable

h(x) =

t∑
i=1

aix
ki(1− x)li .

The number of positive solutions of (1.3.8) is equal to that of h = 0 contained in ]0, 1[. We

prove Theorem 1.9 using the same approach that was considered in [LRW03] i.e. we consider a

recursion involving derivatives of analytic functions in one variable associated to the system (1.3.8).

Beginning with the function f1 = h, at each step 1 < i < t, we are left with a function fi defined

as a certain number of derivatives of fi−1 multiplied by powers of x and of (1− x). Using Rolle’s

Theorem for each fi, one can bound the number of its roots contained in ]0, 1[ in terms of the

roots of fi−1 in the same interval. It turns out that at the step t− 2, we are reduced to bound the

number of roots in ]0, 1[ of the equation φ(x) = 1, where

φ(x) =
xα(1− x)βP (x)

Q(x)
,

α, β ∈ Q, and both P and Q are real polynomials of degree at most 2t−2 − 1.

The larger part of Chapter 4 is devoted to the proof in Section 4.3 of the following result.

Theorem 1.10. We have ]{x ∈]0, 1[ |φ(x) = 1} ≤ degP + degQ+ 2.

Choosing m ∈ N such that both mα and mβ are integers, we get a rational function ϕ := φm :

CP 1 −→ CP 1. The inverse images of 0, 1, ∞ are given by the roots of P , Q, ϕ − 1, together

with 0 and 1 (if αβ 6= 0). These inverse images lie on the graph Γ := ϕ−1(RP 1) ⊂ CP 1, which

is an example of a Grothendieck’s real dessin d’enfant. Although this latter object Γ appears

in Chapter 4 as well, we use it this time in a yet another resourceful way. In fact, there are

many restrictions on the topology of the graph of ϕ that appear explicitly as restrictions on

Γ = ϕ−1(RP 1). Namely, critical points of ϕ correspond to vertices of Γ. The number of roots of

ϕ−1 in ]0, 1[ is controlled by the number of a certain type of critical points of ϕ called useful positive

critical points. By doing a delicate analysis on Γ, we bound the number of vertices corresponding

to these critical points in terms of degP and degQ.

We consider in Section 4.4 the case t = 3 i.e. the case of two trinomials in two variables. Recall

that when the maximal number of positive solutions is attained, the Minkowski sum ∆1 +∆2 is an

hexagon (see [LRW03]). In terms of normal fans, this means that the normal fan of the Minkowski

sum ∆1 + ∆2, which is the common refinement of the normal fans of ∆1 and ∆2, has six 2-

dimensional cones (and six 1-dimensional cones). We give the following additional constraints on

the Minkowski sum of ∆1 and ∆2 when (1.3.8) has five positive solutions. We say that ∆1 and

∆2 alternate if every 2-dimensional cone of the normal fan of ∆1 contains a 1-dimensional cone of

the normal fan of ∆2 having only the origin as a common face. A further analysis of Γ in the case

t = 3 allows us to obtain the following result.

Theorem 1.11. If the system (1.3.8) has 5 positive solution, then ∆1 and ∆2 do not alternate.

The Newton triangles ∆1 and ∆2 do not alternate means that there exist two consecutive edges

of ∆1 + ∆2 which are translate of two consecutive edges of either ∆1 or ∆2. Figure 7.2 illustrates

this theorem for the system (7.3.6), and we provide another example in Section 4.4.
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Figure 1.2: The Newton polytopes, their Minkowski sum and the associated normal fans
of (7.3.6).

1.4.3 Chapter 5: Characterization of circuits supporting polynomial
systems with the maximal number of positive solutions

Recall that a circuitW ⊂ Rn is a set of n+2 distinct points that are minimally affinely dependent.

A very recent generalization of Descartes’ rule of sign was developed by F. Bihan and A. Dickenstein

in [BD16]. This gave some conditions on both the circuit and the coefficient matrix that are

necessary for the system to have n + 1 non-degenerate positive solutions. More precisely, the

authors in [BD16] show that if such a system has n + 1 non-degenerate positive solutions, then

all maximal minors of the coefficient matrix are nonzero and any affine relation
∑n+2

i=1 λiwi = 0

on W has the same number (up to 1 if n is odd) of positive coefficients as that of negative ones.

In this chapter, we completely characterize the circuits which are supports of polynomial systems

with n+ 1 non-degenerate positive solutions.

Theorem 1.12. A circuit W in Rn supports a system with n+1 non-degenerate positive solutions

if and only if there exists a bijection

{1, . . . , n+ 2} −→ W
i 7−→ wi

such that every affine relation on W can be written as

s∑
i=1

αiwi =

n+2∑
s+1

αiwi,

where s = b(n+ 2)/2c and all αi are positive numbers which satisfy

r∑
i=1

αi <

s+r∑
i=s+1

αi <

r+1∑
i=1

αi for r = 1, . . . , s− 1 if n is even
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or
r∑
i=1

αi <

s+r+1∑
i=s+2

αi <

r+1∑
i=1

αi for r = 1, . . . , s− 1 if n is odd.

F. Bihan proved in [Bih15] that if a circuit in Zn supports a maximally positive system with n+1

non-degenerate positive solutions, then it has a primitive affine relation (i.e. affine relation with

coprime integer coefficients) as in Theorem 1.12 with α1 = αn+2 = 1 and all other coefficients are

equal to two. This can be seen as a consequence of Theorem 1.12 (see Example 5.12, Section 5.2).

Indeed, if W supports a maximally positive system with n + 1 non-degenerate positive solutions,

then the subgroup of Zn generated byW is Zn. Moreover, if
∑s

i=1 αiwi =
∑n+2

s+1 αiwi is a primitive

affine relation, then
∑s

i=1 αi =
∑n+2

s+1 αi = n + 1 (see [Bih15] for more details), which together

with inequalities in Theorem 1.12 imply the desired equalities. In order to prove Theorem 1.12,

one can reduce to the case where W ⊂ Zn (see the first part of Chapter 5). We prove the “only if”

part of Theorem 1.12 in the following way. Consider a polynomial system supported on a circuit

with n equations in n variables that has the maximal number of non-degenerate positive solutions.

We associate to it using Gale duality (see Section 5.1), a univariate function

ϕ(y) =

n+1∏
i=1

Pλii ,

where Pi a polynomial of degree 1 that depends on the equations of the system,
∑n+1

i=1 λi(wi−w0)

is a linear relation on the vectors wi − w0 and the non-degenerate positive solutions of the initial

system are in bijection with solutions of ϕ(y) = 1 contained in

∆+ = {y ∈ R>0 | Pi(y) > 0, i = 1, . . . , n+ 1}.

The homogenization of ϕ is a rational map CP 1 → CP 1, so that the inverse image of RP 1 by this

homogenization is the real dessin d’enfant Γ (see Chapter 2). Since the valencies of the vertices

of Γ are controlled by the integers λi and the roots of Pi for i = 1, . . . , n + 1, by analysing Γ, we

obtain the inequalities of Theorem 1.12.

The solutions of ϕ(y) = 1 in ∆+ are roots of the Gale polynomial

G(y) =
∏
λi>0

Pλii (y)−
∏
λi<0

P−λii (y) (1.4.3)

in the same interval. In [PR13, proof of Lemma 1.8], K. Phillipson and J.-M. Rojas construct poly-

nomial systems supported on a circuit in Zn with n+1 non-degenerate positive solutions using Viro

polynomials Pi,t(y) = ai + tαibi, where ai, bi, αi ∈ R, and t > 0 is a parameter that will be taken

small enough. They apply the version of Viro’s combinatorial patchworking developed in [Stu94]

which involves mixed subdivision of Newton polytopes. Here, we also use Viro polynomials Pi,t,

and look directly at the roots of the corresponding Gale polynomial in ∆+. The inequalities in

Theorem 1.12 appear explicitly as being necessary to construct polynomial systems supported on

a circuit in Zn with n+ 1 non-degenerate positive solution using Viro polynomials Pi,t.

1.4.4 Chapter 6: Constructing polynomial systems with many positive
solutions

Tropical geometry is a new domain in mathematics that is situated at the junction of fields such

as toric geometry, complex or real geometry, and combinatorics [Mik06, MR05, MS15]. It turns
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out, that Sturmfels’ generalization of Viro’s Theorem can be reformulated in the context of trop-

ical geometry (see [Mik04, Rul01]). This makes tropical geometry an effective tool to construct

polynomial systems with prescribed support and many positive solutions.

Recall that the best known fewnomial bound on the number of non-degenerate positive solu-

tions for a real polynomial system of n equations in n variables supported on a set of n + k + 1

points for k, n ≥ 1 is equal to e2+3
4 2(k2)nk [BS07]. In fact, the same paper contains the better

upper bound 15 when n = k = 2. However, the best previously known constructions give 5 non-

degenerate positive solutions (c.f. [Haa02]). The motivation behind this chapter is to implement

Sturmfels’ version of Viro’s combinatorial patchworking and other tools and results (c.f. Chap-

ter 2, Subsection 2.2.6) developed in tropical geometry for constructing a system of two equations

in two variables and five monomials (a system of type n = k = 2 for short) having many positive

solutions.

Let K be the field of generalized locally convergent Puiseux series

a(t) =
∑
r∈R

αrt
r,

where R ⊂ R is a well ordered set and a(t) is a complex series convergent for t > 0 small enough.

This is an algebraically closed field. Consider the subfield RK of K of real generalized Puiseux

series, that is all αr appearing in a(t) are real numbers. We consider in this chapter a sparse

(Laurent) polynomial system

f1(z) = f2(z) = 0, (1.4.4)

with equations defined over RK. We assume that (1.4.4) has finitely many solutions, and all of

them are non-degenerate. A positive element a(t) of K is an element of RK∗ whose first-order

term has positive coefficient.

To a Laurent polynomial f(z) =
∑

w∈W cwz
w ∈ R[z], one associates a tropical polynomial

ftrop(x) = “
∑
w∈W

val(cw)xw”,

where val(cw) is minus the order (in the classical sense) of the Puiseux series cw, and the operations

are the tropical ones (the sum is the max, and the product is the classical sum). The associated

tropical hypersurface T is the corner locus of the piecewise-linear convex function Rn → Rn,

x 7→ ftrop(x). By Kapranov’s Theorem [Kap00] (see Subsection 2.2.2), the tropical hypersurface

T coincides with the closure of

Val ({z ∈ (K∗)n | f(z) = 0}) ,

where Val is the extension of the function val coordinate-wise. The positive part of T is the

closure of Val ({z ∈ (RK>0)n | f(z) = 0}) .
Consider now again polynomials f1, f2 ∈ RK[z±1

1 , z±1
2 ] defining two tropical curves T1, T2 ⊂ R2.

Assume for the moment that T1 and T2 intersect transversally, which means that each intersection

point is isolated and contained in the relative interiors of one 1-dimensional linear piece of T1 and

one 1-dimensional linear piece of T2. Then by Sturmfels’ generalization of Viro’s theorem, each

intersection point of T1 and T2 contained in both positive parts (positive intersection point for

short) lifts to a unique solution of (1.4.4) in (RK>0)2, which gives a positive solution of a real

system g1(z) = g2(z) = 0 by taking t > 0 small enough. Recall that in the case n = k = 2

(meaning that equations of T1 and T2 have a total of five monomials), the number of transversal
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intersection points of T1 and T2 is bounded from above by six (see Subsection 1.3.2). We prove

that this bound is sharp and can be realized by positive intersection points.

Proposition 1.13. There exist two plane tropical curves T1 and T2 defined by equations containing

a total of five monomials and which have six positive transversal intersection points.

Therefore, using Sturmfels’ generalization of Viro’s theorem (as explained above), this gives a

real system of type n = k = 2 having six non-degenerate positive solutions. In order to get a real

system of type n = k = 2 with more than six non-degenerate positive solutions, we thus consider

tropical curves T1 and T2 which do not intersect transversally.

Note that T1 ∩ T2 is piecewice-linear and its linear pieces are either isolated points or line

segments. Luckily, if a linear piece ξ ⊂ T1 ∩ T2 is an isolated point, then results in [Kat09, Rab12,

OP13] and [BLdM12] show that ξ lifts to a solution of (1.4.4) in (K∗)2, and then non-degenerate

positive solutions of (1.4.4) with valuation equal to ξ can be estimated by computing the real

reduced system of (1.4.4) with respect to ξ (see Chapter 2, Subsection 2.2.6). However, if such a

linear piece ξ has dimension 1, then ξ is an infinite set containing a finite (and possibly empty) set of

points that are valuations of non-degenerate positive solutions of (1.4.4). Locating such valuations

does not come easily. In fact, there is only one known method for achieving this, called tropical

modification (see [Mik06, BLdM12]). This problem is addressed in Section 6.2 of Chapter 6 using

another approach. Namely, for each linear piece ξ of dimension 1, we associate a univariate Viro

polynomial ft,ξ so that all the first-order terms of non-degenerate positive solutions of (1.4.4) with

valuations in the relative interior of ξ can be recovered from both the reduced system of (1.4.4)

with respect ξ, and the Viro polynomial ft,ξ.

We now consider a system (1.4.4) of type n = k = 2. Assume that no three points of the

support of the system belong to a line. We prove in Section 6.3 that one can associate to such a

system a new system
a0 + ym1

1 + a2y
m2
1 yn2

2 + a3t
αym3

1 yn3
2 = 0,

b0 + ym1
1 + b2y

m2
1 yn2

2 + b4t
βym4

1 yn4
2 = 0,

(1.4.5)

with polynomials in RK[y±1
1 , y±1

2 ], that has the same number of positive non-degenerate solutions

as (1.4.4), and satisfying that all ai, bj have zero order, all mi, ni belong to Z with m1, n2 > 0, and

both α, β are real numbers.

The two main results of Chapter 6 are the following.

Theorem 1.14. If (α, β) 6= (0, 0), then (1.4.5) has at most nine non-degenerate positive solutions.

We prove Theorem 1.14 in Section 6.5. Note that if (α, β) = (0, 0), then there is nothing that

can be done using tropical geometry. Indeed, the task of bounding the number of non-degenerate

positive solutions of (1.4.5) becomes equivalent to computing the number of positive solutions of

a real polynomial system of type n = k = 2.

Theorem 1.15. There exists a system (1.4.5) that has seven non-degenerate positive solutions.

The construction of a system (1.4.5) that has seven non-degenerate positive solutions is made

in Section 6.5. Namely, for any 0 < α < γ0, the system

−1 + y6
1 + y3

1y
6
2 − tαy−14

1 y7
2 = 0,

−1 + 0.36008tγ0 + y6
1 + (1− 0.36008tα)y3

1y
6
2 − (44/31)

5
6 tαy−12

1 y9
2 = 0,

(1.4.6)

has seven non-degenerate positive solutions.
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We made a tedious case-by-case analysis to get necessary conditions for (1.4.5) to have more

than six non-degenerate positive solutions. As a by-product, we obtain in Sections 6.6 and 6.7 the

following result.

Theorem 1.16. If (α, β) 6= (0, 0), and one of the following is true

1. For i = 0, 2, the coefficient of the first order term of ai is different from that of bi,

2. α 6= β,

3. α = β < 0,

then (1.4.5) has at most six non-degenerate positive solutions.



Chapter 2

Preliminaries

2.1 A brief introduction to real dessins d’enfant

For more details, see [Ore03, Bru06, Bih07] for example. Consider a real rational map ϕ =
P

Q
: C → C, where P and Q are two real polynomials. The degree of ϕ is the maximum

of the degrees of P and Q. We extend ϕ to a rational homogeneous function CP 1 → CP 1,

(x0 : x1) 7→ (1 : P/Q), that we denote again by ϕ. Define

Γ := ϕ−1(RP 1).

This is a real graph on CP 1 invariant with respect to the complex conjugation and which contains

RP 1. Any connected component of CP 1 \ Γ is homeomorphic to an open disk. Moreover, each

vertex of Γ has even valency, and the multiplicity of a critical point with real critical value of ϕ

is half its valency. The graph Γ contains the inverse images of (1 : 0), (0 : 1) and (1 : 1), which

are the sets of roots of P , Q and P/Q − 1 respectively. Denote by the same letter p (resp. q

and r) the points of Γ which are mapped to (1 : 0) (resp. (0 : 1) and (1 : 1)). Orient the real

axis on the target space via the arrows 0 → ∞ → 1 → 0 (orientation given by the decreasing

order in R), which is equivalent to orienting RP 1 via the arrows (1 : 0) → (0 : 1) → (1 : 1). Pull

back this orientation by ϕ, the graph Γ becomes an oriented graph, with the orientation given by

arrows p→ q → r → p. A cycle of Γ is the boundary of a connected component of CP 1\Γ. Any

such cycle contains the same non-zero number of letters r, p , q (see Figure 2.1). We say that

a cycle obeys the cycle rule. The graph Γ is called real dessin d’enfant associated to ϕ. Since

Γ is invariant under complex conjugation, it is determined by its intersection with one connected

component H (for half) of CP 1 \ RP 1. Since ϕ is real, its degree is the sum of the degrees of its

restrictions to connected components of CP 1 \ Γ. To represent the real dessin d’enfant, we draw

a horizontal line corresponding to the real projective line and draw below one half HΓ of Γ, see

Figure 3.1 for instance.

Clearly, the arrangement of real roots of P , Q and P/Q− 1 together with their multiplicities

can be extracted from the graph Γ. We encode this arrangement together with the multiplicities

by what is called a root scheme.
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Figure 2.1: Cycles of Γ obeying the cycle rule.

Definition 2.1 ([Bru06, Ore03]). A root scheme is a k-tuple (l1,m1), . . . , (lk,mk) ∈ ({p, q, r}×
N)k. A root scheme is realizable by polynomials of degree d if there exist real polynomials P and Q

such that ϕ has degree d and if x1 < . . . < xk are the real roots of P , Q and P/Q− 1, then li = p

(resp. q, r) if xi is a root of P (resp. Q, P/Q− 1) and mi is the multiplicity of xi.

Conversely, suppose we are given a real graph Γ ⊂ CP 1 that is invariant under complex

conjugation, together with a real continuous map φ : Γ → RP 1. Denote the inverse images of 0,

∞ and 1 by letters p, q and r, respectively, and orient Γ with the pull back by φ of the above

orientation of RP 1. This graph is called a real rational graph [Bru06] if any vertex of Γ has even

valency and any connected component of CP 1 \Γ is homeomorphic to an open disk. Then, for any

connected component D of CP 1 \ Γ, the map φ|∂D is a covering of RP 1 whose degree dD is the

number of letters p (resp. q, r) in ∂D. We define the degree of Γ to be half the sum of the degrees

dD over all connected components of CP 1 \ Γ. Since φ is a real map, the degree of Γ is also the

sum of the degrees dD over all connected components D of CP 1 \ Γ contained in one connected

component of CP 1 \RP 1.

The following result [Ore03] explains the importance of real rational graphs in computing the

roots of P/Q− 1.

Proposition 2.2 (Orevkov). A root scheme is realizable by polynomials of degree d if and only if

it can be extracted from a real rational graph of degree d on CP 1.

We show now how to prove the if part in Proposition 2.2 (see [Bih07, Bru06, Ore03]). For each

connected component D of CP 1 \Γ, extend φ|∂D to a branched covering of degree dD (use the map

z 7→ zdD ) of one connected component of CP 1 \RP 1, so that two adjacent connected components

of CP 1 \ Γ project to different connected components of CP 1 \ RP 1. Then, it is possible to glue

continuously these maps in order to obtain a real branched covering φ : CP 1 → CP 1 of degree

d. The map φ becomes a real rational map of degree d for the standard complex structure on the

target space and its pull-back by φ on the source space. There exist then real polynomials P and

Q such that P/Q has degree d and φ = P/Q, so that the points p (resp. q, r) correspond to the

roots of P (resp. Q, P/Q− 1) and Γ = φ−1(RP 1).

2.2 A brief introduction to tropical geometry

The notations in this section are taken from [BLdM12, BB13, Ren15, GL15].
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2.2.1 Polytopes and subdivisions

Let Rn denote the n-dimensional Euclidean space, endowed with the standard inner product

〈 , 〉 : Rn ×R→ R.

Definition 2.3. A rational polyhedron in Rn is a convex set of points x, defined by a finite

number of inequalities of type

〈x,w〉 ≤ c,

where w ∈ Zn and c ∈ Rn.

If a rational polyhedron is closed, then it is called an integer convex polytope. All polytopes

considered in Chapter 6 are integer convex.

Definition 2.4. A rational polyhedral complex is a finite set of rational polyhedra P = {∆i}i
such that

1. for every ∆ ∈ P, if ∆′ is a face of ∆, then ∆′ ∈ P, and

2. if ∆,∆′ ∈ P, then ∆ ∩∆′ is a face of both ∆ and ∆′.

Let F be a field of characteristic zero. For z = (z1, . . . , zn) ∈ Fn and w = (w1, . . . , wn) ∈ Rn,

set zw = zw
1

1 · · · zw
n

n . Consider a polynomial f =
∑

w∈W cwz
w ∈ F [z±1

1 , . . . , z±1
n ], with W 6= ∅ a

finite subset of Zn, and cw ∈ F ∗.

Definition 2.5. The Newton polytope ∆(f) of f is defined to be the convex hull Conv(W) of

W.

Definition 2.6. A polyhedral subdivision of an integer convex polytope ∆ is a set of integer

convex polytopes {∆i}i∈I such that

• ∪i∈I∆i = ∆, and

• if i, j ∈ I, then if the intersection ∆i∩∆j is non-empty, it is a common face of the polytope

∆i and the polytope ∆j.

Definition 2.7. Let ∆ be an integer convex polytope in Rn and let τ denote a polyhedral subdivision

of ∆ consisting of integer convex polytopes. We say that τ is regular if there exists a continuous,

convex, piecewise-linear function ϕ : ∆→ R which is affine linear on every simplex of τ .

Let ∆ be an integer convex polytope in Rn and let φ : ∆ ∩ Zn → R be a function. We denote

by ∆̂(φ) the convex hull of the graph of φ, i.e.,

∆̂(φ) := Conv
(
{(i, φ(i)) ∈ Rn+1 | i ∈ ∆ ∩ Zn}

)
.

Then the polyhedral subdivision of ∆, induced by projecting the union of the lower faces of ∆̂(φ)

onto the first n coordinates, is regular. In the following, we describe how we define φ using the

polynomials that we will be working with.
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2.2.2 Tropical polynomials and hypersurfaces

A locally convergent generalized Puiseux series is a formal series of the form

a(t) =
∑
r∈R

αrt
r,

where R ⊂ R is a well-ordered set, all αr ∈ C, and the series is convergent for t > 0 small enough.

We denote by K the set of all locally convergent generalized Puiseux series. It is naturally a field

of characteristic 0, which turns out to be algebraically closed.

Notation 2.8. Let coef(a(t)) denote the coefficient of the first term of a(t) following the increasing

order of the exponents of t. We extend coef to a map Coef : Kn → Rn by taking coef coordinate-

wise, i.e. Coef(a1(t), . . . , an(t)) = (coef(a1(t)), . . . , coef(an(t)))

An element a(t) =
∑
r∈R

αrt
r of K is said to be real if αr ∈ R for all r, and positive if a(t) is

real and coef(a(t)) > 0.

Denote by RK (resp. RK>0) the subfield of K composed of real (resp. positive) series. Since

elements of K are convergent for t > 0 small enough, an algebraic variety over K (resp. RK) can be

seen as a one parametric family of algebraic varieties over C (resp. R). The field K has a natural

non-archimedian valuation defined as follows:

val : K −→ R ∪ {−∞}
0 7−→ −∞∑

r∈R
αrt

r 6= 0 7−→ −minR{r | αr 6= 0}.

The valuation extends naturally to a map Val : Kn → (R∪{−∞})n by evaluating val coordinate-

wise, i.e. Val(z1, . . . , zn) = (val(z1), . . . , val(zn)). We shall often use the notation val and Val

when the context is a tropical polynomial or a tropical hypersurface. On the other hand, define

ord := − val, with ord(0) = +∞, and use it as a notation when the context is an element in RKn

or a polynomial in RK[z±1
1 , . . . , z±1

2 ].

Convention 2.9. For any s ∈ K, we have coef(s) = 0⇔ s = 0 and ord(s) = +∞⇔ s = 0

Consider a polynomial

f(z) :=
∑
w∈W

cwz
w ∈ K[z±1

1 , . . . , z±1
n ],

with W a finite subset of Zn and all cw are non-zero. Let Vf = {z ∈ (K∗)2 | f(z) = 0} be the zero

set of f in (K∗)n
The tropical hypersurface V trop

f associated to f is the closure (in the usual topology) of the

image under Val of Vf :

V trop
f = Val(Vf ) ⊂ Rn,

endowed with a weight function which we will define later. There are other equivalent definitions

of a tropical hypersurface. Namely, define

ν : W −→ R
w 7−→ ord(cw).
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Its Legendre transform is a piecewise-linear convex function

L(ν) : Rn −→ R
x 7−→ max

w∈W
{〈x,w〉 − ν(w)}.

We have the fundamental Theorem of Kapranov [Kap00].

Theorem 2.10 (Kapranov). A tropical hypersurface V trop
f is the corner locus of L(ν).

The corner locus of L(ν) is the set of points at which it is not differentiable. Tropical hypersur-

faces can also be described as algebraic varieties over the tropical semifield (R∪{−∞}, “+”, “×”),

where for any two elements x and y in R ∪ {−∞}, one has

“x+ y” = max(x, y) and “x× y” = x+ y.

A multivariate tropical polynomial is a polynomial in R[x1, . . . , xn], where the addition and multi-

plication are the tropical ones. Hence, a tropical polynomial is given by a maximum of finitely many

affine functions whose linear parts have integer coefficients and constant parts are real numbers.

The tropicalization of the polynomial f is a tropical polynomial

ftrop(x) = max
w∈W
{〈x,w〉+ val(cw)}.

This tropical polynomial coincides with the piecewise-linear convex function L(ν) defined above.

Therefore, Theorem 2.10 asserts that V trop
f is the corner locus of ftrop. Conversely, the corner

locus of any tropical polynomial is a tropical hypersurface.

2.2.3 Tropical hypersurfaces and subdivisions

A tropical hypersurface induces a subdivision of the Newton polytope ∆(f) in the following way.

The hypersurface V trop
f is a (n−1)-dimensional piecewise-linear complex which induces a polyhedral

subdivision Ξ of Rn. We will call cells the elements of Ξ. Note that these cells have rational slopes.

The n-dimensional cells of Ξ are the closures of the connected components of the complement of

V trop
f in Rn. The lower dimensional cells of Ξ are contained in V trop

f and we will just say that they

are cells of V trop
f .

Consider a cell ξ of V trop
f and pick a point x in the relative interior of ξ. Then the set

Ix = {w ∈ ∆(f) ∩ Zn | ∃ x ∈ Rn, ftrop(x) = 〈x,w〉+ val(cw)}

is independent of x, and denote by ∆ξ the convex hull of this set. All together the polyhedra ∆ξ

form a subdivision τ of ∆(f) called the dual subdivision, and the cell ∆ξ is called the dual of ξ.

Both subdivisions τ and Ξ are dual in the following sense. There is a one-to-one correspondence

between Ξ and τ , which reverses the inclusion relations, and such that if ∆ξ ∈ τ corresponds to

ξ ∈ Ξ then

1. dim ξ + dim ∆ξ = n,

2. the cell ξ and the polytope ∆ξ span orthogonal real affine spaces,

3. the cell ξ is unbounded if and only if ∆ξ lies on a proper face of ∆(f).
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Note that τ coincides with the regular subdivision of Definition 2.7 described in Subsection 2.2.1.

Indeed, let ∆̂(f) ⊂ Rn × R be the convex hull of the points (w, ν(w)) with w ∈ W and ν(w) =

ord(cw). Define

ν̂ : ∆(f) −→ R
x 7−→ min{y | (x, y) ∈ ∆̂(f)}.

Then, the the domains of linearity of ν̂ form the dual subdivision τ .

Consider a facet (face of dimension n−1) ξ of V trop
f , then dim ∆ξ = 1 and we define the weight

of ξ by w(ξ) := Card(∆ξ ∩ Zn) − 1. Tropical varieties satisfy the so-called balancing condition.

Since in Chapter 6, we only work with tropical curves in R2, we give here this property only for

this case. We refer to [Mik06] for the general case. Let T ⊂ Rn be a tropical curve, and let v be a

vertex of T . Let ξ1, . . . , ξl be the edges of T adjacent to v. Since T is a rational graph, each edge

ξi has a primitive integer direction. If in addition we ask that the orientation of ξi defined by this

vector points away from v, then this primitive integer vector is unique. Let us denote by uv,i this

vector.

Proposition 2.11 (Balancing condition). For any vertex v, one has∑
i=1

w(ξi)uv,i = 0.

2.2.4 Intersection of tropical hypersurfaces

Consider polynomials f1, . . . , fk ∈ K[z±1
1 , . . . , z±1

n ]. For i = 1, . . . , k, let ∆i ⊂ Rn (resp. Ti ⊂ Rn)

denote the Newton polytope (resp. tropical curve) associated to fi. Recall that each tropical curve

Ti defines a piecewise linear polyhedral subdivision Ξi of Rn which is dual to a convex polyhedral

subdivision τi of ∆i. The union of these tropical curves defines a piecewise-linear polyhedral

subdivision Ξ of Rn. Any non-empty cell of Ξ can be written as

ξ = ξ1 ∩ · · · ∩ ξk

with ξi ∈ Ξi for i = 1, . . . , k. We require that ξ does not lie in the boundary of any ξi, thus any cell

ξ ∈ Ξ can be uniquely written in this way. Denote by τ the mixed subdivision of the Minkowski

sum ∆ = ∆1 + · · ·+ ∆k induced by the tropical polynomials f1, . . . , fk. Recall that any polytope

σ ∈ τ comes with a privileged representation σ = σ1 + · · ·+ σk with σi ∈ τi for i = 1, . . . , k. The

above duality-correspondence applied to the (tropical) product of the tropical polynomials gives

rise to the following well-known fact (see [BB13] for instance).

Proposition 2.12. There is a one-to-one duality correspondence between Ξ and τ , which reverses

the inclusion relations, and such that if σ ∈ τ corresponds to ξ ∈ Ξ, then

1. if ξ = ξ1 ∩ · · · ∩ ξk with ξi ∈ Ξi for i = 1, . . . , k, then σ has representation σ = σ1 + · · ·+σk
where each σi is the polytope dual to ξi.

2. dim ξ + dimσ = n,

3. the cell ξ and the polytope σ span orthonogonal real affine spaces,

4. the cell ξ is unbounded if and only if σ lies on a proper face of ∆.
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Notation 2.13. In what follows, we denote such a σ by ∆ξ and we say that each polytope ∆ξ a

mixed polytope of τ .

Definition 2.14. A cell ξ is transversal if it satisfies dim(∆ξ) = dim(∆ξ1) + · · · + dim(∆ξk),

and it is non transversal if the previous equality does not hold.

2.2.5 Generalized Viro theorem and tropical reformulation

An important direction in real algebraic geometry is the construction of real algebraic hypersurfaces

with prescribed topology (see [Ris92, Vir84] or [Vir89] for example). Central to these developments

is a combinatorial construction due to O.Ya. Viro, which is based on regular triangulations of

Newton polytopes. Using this technique, significant progress has been made in the study of low

degree curves in the real projective plane (Hilbert’s 16th problem). Since Chapter 6 of this thesis

concerns algebraic sets of dimension zero contained in (R>0)n, we only describe in this section how

to use combinatorial patchworking in that orthant of Rn.

Following the description of B. Sturmfels [Stu94], we recall now Viro’s Theorem for hypersur-

faces. LetW ⊂ Zn be a finite set of lattice points, and denote by ∆ the convex hull ofW. Assume

that dim ∆ = n and let ϕ : W → Z be any function inducing a regular triangulation τϕ of the

integer convex polytope ∆ (see Definition 2.7). Fix non-zero real numbers cw, w ∈ W. For each

positive real number t, we consider a Laurent polynomial

ft(z1, . . . , zn) =
∑
w∈W

cwt
ϕ(w)zw. (2.2.1)

Let Bar(τϕ) denote the first barycentric subdivision of the regular triangulation τϕ. Each max-

imal cell µ of Bar(τϕ) is incident to a unique point w ∈ W. We define the sign of a maximal cell µ

to be the sign of the associated real number cw. The sign of any lower dimensional cell λ ∈ Bar(τϕ)

is defined as follows:

sign(λ) :=


+ if sign(µ) = + for all maximal cells µ containing λ,

− if sign(µ) = − for all maximal cells µ containing λ,

0 otherwise.

Let Z+(τϕ, f) denote the subcomplex of Bar(τϕ) consisting of all cells λ with sign(λ) = 0, and

let V+(ft) denote the zero set of ft in the positive orthant of Rn. Denote by Int(∆) the relative

interior of ∆.

Theorem 2.15 (Viro). For sufficiently small t > 0, there exists a homeomorphism (R>0)n →
Int(∆) sending the real algebraic set V+(ft) ⊂ (R>0)n to the simplicial complex Z+(τϕ, f) ⊂ Int(∆).

Naturally, a signed version of Theorem 2.15 holds in each of the 2n orthants

(R>0)ε := {(x1, . . . , xn) ∈ (R∗)n | sign(xi) = εi for i = 1, . . . , n},

where ε ∈ {+,−}n. In fact, O. Viro proves a more general Theorem for Theorem 2.15, in which

he defines a set that is homeomorphic to the the zero set V (ft) ⊂ Rn (not only the positive zero

set V+(ft)) by means of gluing the zero sets of ft contained in all other orthants of Rn.

We now reformulate Theorem 2.15 using tropical geometry. We consider g := ft as a polynomial

defined over the field of real generalized locally convergent Puiseux series, where each coefficient
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cwt
ϕ(w) ∈ RK∗ of g has only one term. Therefore coef(cwt

ϕ(w)) = cw, val(cwt
ϕ(w)) = −ϕ(w), and

we associate to g a tropical hypersurface V trop
g as defined in Subsection 2.2.2. Recall that V trop

g

induces a subdivision Ξg of Rn that is dual to τϕ. The tropical hypersurface V trop
g is homeomorphic

to the barycentric subdivision Bar(τϕ). Indeed, τϕ is a triangulation, and thus Bar(τϕ) becomes

dual to τϕ in the sense of the duality described in Subsection 2.2.3.

We define for each n-cell ξ ∈ Ξg, dual to a 0-face (vertex) w of the triangulation τϕ, a sign

ε(w) ∈ {+,−}, to be equal to the sign of cw.

Definition 2.16. The positive part, denoted by V trop
g,+ , is the subcomplex of V trop

g consisting of

all (n−1)-cells of V trop
g that are adjacent to two n-cells of V trop

g having different signs. A positive

facet ξ+ is an (n− 1)-dimensional cell of V trop
g,+ .

The following is a Corollary of Mikhalkin [Mik04] and Rullgard [Rul01] results, where they

completely describe the topology of V (ft) using amoebas.

Theorem 2.17 (Mikhalkin, Rullgard). For sufficiently small t > 0, there exists a homeomorphism

(R>0)n → Rn sending the zero set V+(ft) ⊂ (R>0)n to V trop
g,+ ⊂ Rn.

B. Sturmfels generalized Viro’s method for complete intersections in [Stu94]. We give now a

tropical reformulation of one of the main Theorems of [Stu94].

Consider a system

f1,t(z1, . . . , zn) = · · · = fk,t(z1, . . . , zn) = 0, (2.2.2)

of k equations, where all ft,i are polynomial (2.2.1). For i = 1, . . . , k, we define as before gi := fi,t
as a polynomial in RK[z±1

1 , . . . , z±1
n ]. Let V+(f1,t, . . . , fk,t) ⊂ (R>0)n denote the set of positive

solutions of (2.2.2).

Theorem 2.18 (Sturmfels). Assume that the tropical hypersurfaces V trop
g1 , . . . , V trop

gk
intersect

transversally. Then for sufficiently small t > 0, there exists a homeomorphism (R>0)n → Rn send-

ing the real algebraic set Z+(f1,t, . . . , fk,t) ⊂ (R>0)n to the intersection V trop
g1,+
∩ · · · ∩ V trop

gk,+
⊂ Rn.

Similarly to O. Viro’s work, B. Sturmfels generalizes Theorem 2.18 for the zero set

V (f1,t, . . . , fk,t) ⊂ Rn (see [Stu94, Theorem 5]).

2.2.5.1 Transversal intersection points and discrete mixed volume

Assume now that the number of polynomials in (2.2.2) is equal to that of variables (i.e. k =

n), and assume that the tropical hypersurfaces V trop
g1 , . . . , V trop

gn intersect transversally. Then the

intersection set V trop
+ (g1, . . . , gn) := V trop

gi,+
∩ · · · ∩ V trop

gk,+
is a (possibly empty) set of points in

Rn. Each point p of V trop
+ (g1, . . . , gn) is expressed in a unique way as a transversal intersection

ξ1,+ ∩ · · · ∩ ξn,+, where for i = 1, . . . , n, the cell ξi,+ ⊂ V trop
gi,+

is a positive cell. Theorem 2.18

is a powerful tool for constructing polynomial systems (2.2.2) with many non-degenerate positive

solutions.

A consequence of F. Bihan’s more general result [Bih14] is a bound on the number of positive

mixed points for a system (2.2.2). For any number r of finite sets W1, . . . ,Wr in Rn, and for any

non-empty I ⊂ [r] = {1, 2, . . . , r}, write WI for the set of points
∑

i∈I wi over all wi ∈ Wi with

i ∈ I. The associated discrete mixed volume of W1, . . . ,Wr is defined as

D(W1, . . . ,Wr) =
∑
I⊂[r]

(−1)r−|I||WI |, (2.2.3)
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where the sum is taken over all subsets I of [r] including the empty set with the convention that

|W∅| = 1. Denote by Wi the support of gi for i = 1, . . . , n. Recall that the tropical hypersurfaces

associated to g1, . . . , gn intersect transversally.

Theorem 2.19 (Bihan). The number ]{V trop
g1 ∩ · · · ∩ V trop

gn } is less or equal to the discrete mixed

volume D(W1, . . . ,Wn).

Obviously, we have

]{V trop
g1,+
∩ · · · ∩ V trop

gn,+
} ≤ ]{V trop

g1 ∩ · · · ∩ V trop
gn }

Moreover, Theorem 1.4 of [Bih14] states that for any finite sets W1, . . . ,Wr ⊂ Rn, we have

D(W1, . . . ,Wr) ≤
∏
i∈[r]

(|Wi| − 1).

Combining the latter result with Theorem 2.19 shows that Kushnirenko’s conjecture is true for

polynomial systems constructed by the combinatorial patchworking method of Viro, or equivalently,

for tropical polynomial systems given by transversal intersections of tropical hypersurfaces.

To our knowledge, we do not know if the discrete mixed volume bound is sharp for any poly-

nomial system with n equations in n variables satisfying that the associated tropical hypersurfaces

intersect transversally. An interesting direction to start, is to look at a system (2.2.2) such that

all polynomials of (2.2.2) have the same support W. For example, when |W| = 4, then the bound

of Theorem 2.19 is 3 and is sharp, see [Bih07].

When |W| = 5 and n = 2, we have D(W,W) = 6. We construct using combinatorial patch-

working (Theorem 2.18) a polynomial system of two equations in two variables having a total of

five distinct monomials and six non-degenerate solutions in (R>0)2. Thus proving that the bound

of Theorem 2.19 is sharp when n = 2 and W1 =W2 = 5.

2.2.6 Reduced systems and non-transversal intersections

Theorem 2.18 is only adapted for the case where the tropical intersections are transverse. Therefore,

we need other machinery to locate the valuations of positive solutions.

2.2.6.1 Types of non-transversal cells

In Chapter 6 of this thesis, we only work with tropical hypersurfaces in dimension two. Therefore,

we classify the types of mixed cells ξ in the case where two tropical plane curves intersect non-

transversally at a cell ξ. Let
◦
ξ denote the relative interior of ξ. Note that ξ =

◦
ξ if ξ is a point.

Assume that ξ is non-transversal, we distinguish three types for such ξ.

• A cell ξ is of type (I) if dim ξ = dim ξ1 = dim ξ2 = 1.

• A cell ξ is of type (II) if one of the cells ξ1, or ξ2 is a vertex, and the other cell is an edge.

• A cell ξ is of type (III) if ξ1 and ξ2 are vertices of the corresponding tropical curves.
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Figure 2.2: The three types of non-transversal intersection cells.

2.2.6.2 Reduced systems

Recall that for an element a(t) ∈ K∗, we denote by coef(a(t)) the non-zero coefficient corresponding

to the term of α(t) with the smallest exponent of t.

Definition 2.20. Let f =
∑

w∈∆(f)∩Z2 cwz
w be a polynomial in K[z±1

1 , z±1
2 ] with cw ∈ K∗, and

let ξ denote a cell of V trop
f . The reduced polynomial f|ξ ∈ C[z±1

1 , z±1
2 ] of f with respect to ξ is

a polynomial defined as

f|ξ =
∑

w∈∆ξ∩W

coef(cw)zw,

where W is the support of f .

We extend this definition to the following. Consider a system

f1(z) = f2(z) = 0, (2.2.4)

with f1, f2 in K[z±1
1 , z±1

2 ] defined as above. Assume that the intersection set T1 ∩ T2 of the

tropical curves T1 and T2 is non-empty, and consider a mixed cell ξ ∈ T1 ∩ T2. As explained in

Subsection 2.2.4, the mixed cell ξ is written as ξ1 ∩ ξ2 for some unique ξ1 ∈ T1 and ξ2 ∈ T2.

Definition 2.21. The reduced system of (4.1.1) with respect to ξ is the system

f1|ξ1 = f2|ξ2 = 0,

with fi|ξi is the reduced polynomial of fi with respect to ξi for i = 1, 2.

In what follows, we assume that all solutions of (2.2.4) are non-degenerate. Let W1 and W2

denote the supports of f1 and f2 respectively, and write

f1(z) =
∑
v∈W1

avz
v and f2(z) =

∑
w∈W2

bwz
w.

The following result also generalizes to a polynomial system defined on the same field with n

equations in n variables.
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Proposition 2.22. If the system (2.2.4) has a non-degenerate solution (α, β) ∈ (K∗)2 such that

Val(α, β) ∈
◦
ξ, then (coef(α), coef(β)) is a real solution of the reduced system

f1|∆ξ1
= f2|∆ξ2

= 0. (2.2.5)

Proof. Assume that (2.2.4) has a non-degenerate solution (α, β) ∈ (K∗)2 such that Val(α, β) ∈
◦
ξ.

Since Val(α, β) belongs to the relative interior of each of ξ1 and ξ2, we have

max{〈Val(α, β), v〉+ val(av), v ∈ W1 \ (W1 ∩∆ξ1)} < 〈Val(α, β), v〉+ val(av) for v ∈ W1 ∩∆ξ1

and

max{〈Val(α, β), w〉+val(bw), w ∈ W2\(W2∩∆ξ2)} < 〈Val(α, β), w〉+val(bw) for w ∈ W2∩∆ξ2 .

Consequently, since ord = − val, we haveM := −〈Val(α, β), v〉−val(av) andN := −〈Val(α, β), w〉−
val(bw) are the orders of f1(α, β) and f2(α, β) respectively. Therefore, replacing (z1, z2) by(
tord(α)z1, t

ord(β)z2

)
in (2.2.4), such a system becomes

f1

(
tord(α)z1, t

ord(β)z2

)
= tM

(∑
v∈W1∩∆ξ1

coef(av)z
v + g1(z)

)
,

f2

(
tord(α)z1, t

ord(β)z2

)
= tN

(∑
w∈W2∩∆ξ2

coef(bw)zw + g2(z)
)
,

(2.2.6)

where all the coefficients of the polynomials Q1 and Q2 of RK[z±1
1 , z±1

2 ] have positive orders. Since

(α, β) is a non-zero solution of (2.2.5), the system (2.2.6) has a non-zero solution (α0, β0) with

ord(α0) = ord(β0) = 0 and Coef(α, β) = Coef(α0, β0). It follows that taking t > 0 small enough,

we get that Coef(α0, β0) is a non-zero solution of∑
v∈W1∩∆ξ1

coef(av)z
v =

∑
w∈W2∩∆ξ2

coef(bw)zw = 0.

Note that Proposition 2.22 holds true for any type of tropical intersection cell ξ. However, the

other direction does not always hold true when ξ is of type (I). Recall that a solution (α, β) ∈ (K∗)2

is positive if (α, β) ∈ (RK∗>0)2.

Proposition 2.23. Assume that dim ξ = 0. If the reduced system of (2.2.4) with respect to

ξ has a non-degenerate solution (ρ1, ρ2) ∈ (R∗>0)2, then (2.2.4) has a non-degenerate solution

(α, β) ∈ (RK∗>0)2 such that Val(α, β) = ξ and Coef(α, β) = (ρ1, ρ2).

Proof. E. Brugallé showed in [BLdM12, Proposition 3.11] (see also [Kat09, Rab12, OP13] for more

details for higher dimension and more exposition relating toric varieties and tropical intersection

theory) that the number of solutions of (2.2.4) with valuation ξ is equal to the mixed volume

MV(∆ξ1 ,∆ξ2) of ξ1 and ξ2 (recall that ∆ξ = ∆ξ1 + ∆ξ2). Since we assumed that (2.2.4) has only

non-degenerate solutions in (K∗)2, we get MV(∆ξ1 ,∆ξ2) distinct solutions of the system (2.2.4)

in (K∗)2 with given valuation ξ. By Proposition 2.22, if f1(z) = f2(z) = 0 and Val(z) = ξ,

then Coef(z) is a solution of the reduced system of (2.2.4) with respect to ξ. The number of

solutions of the reduced system in (C∗)2 is MV(∆ξ1 ,∆ξ2). Assuming that this reduced system has

MV(∆ξ1 ,∆ξ2) distinct solutions in (C∗)2, we obtain that the map z 7→ Coef(z) induces a bijection
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from the set of solutions of (2.2.4) in (K∗)2 with valuation ξ onto the set of solutions in (C∗)2 of

the reduced system of (2.2.4) with respect to ξ.

If z is a solution of (2.2.4) in (K∗)2 with Val(z) = ξ and Coef(z) ∈ (R∗)2, then z ∈ (RK∗)2

since otherwise, z, z̄ would be two distinct solutions of (2.2.4) in (K∗ \ RK∗)2 such that Val(z) =

Val(z̄) = ξ and Coef(z) = Coef(z̄).



Chapter 3

Intersecting a sparse plane curve
and a line

We prove in Section 3.2 the following result.

Theorem 3.1. Let f ∈ R[x, y] be a polynomial with at most t non-zero terms and let a, b be any

real numbers. Assume that the polynomial g(x) = f(x, ax+ b) is not identically zero. Then g has

at most 6t − 7 real roots counted with multiplicities except for the possible roots 0 and −a/b that

are counted at most once.

In Section 3.3, we construct the equation (3.3.4) proving the following.

Theorem 3.2. The maximal number of real intersection points of a real line with a real plane

curve defined by a polynomial with three non-zero terms is eleven.

3.1 Preliminary results

We present some results of M. Avendaño [Ave09] and add other ones. Consider a non-zero univari-

ate polynomial f(x) =
∑d

i=0 aix
i with real coefficients. Denote by V (f) the number of change signs

in the ordered sequence (a0, . . . , ad) disregarding the zero terms. Recall that the famous Descartes’

rule of signs asserts that the number of (strictly) positive roots of f counted with multiplicities

does not exceed V (f).

Lemma 3.3. [Ave09] We have V ((x+ 1)f) ≤ V (f).

The following result is straighforward.

Lemma 3.4. [Ave09] If f, g ∈ R[x] and g has t terms, then V (f + g) ≤ V (f) + 2t.

Denote by N (h) the Newton polytope of a polynomial h and by
◦
N (h) the interior of N (h).

Lemma 3.5. If f, g ∈ R[X], g has t terms and V (f + g) = V (f) + 2t, then N (g) is contained in
◦
N (f).



3.1. Preliminary results 38

Proof. Assume that N (g) is not contained in
◦
N (f). Writing f(x) =

∑s
i=1 aix

αi and g(x) =
t∑

j=1

bjx
βj with 0 ≤ α1 < · · · < αs and 0 ≤ β1 < · · · < βt, we get β1 ≤ α1 or αs ≤ βt. Assume that

β1 ≤ α1 (the case αs ≤ βt is symmetric). Then, obviously

V (f(x) + g(x)) ≤ 1 + V (f(x) + g(x)− b1xβ1).

By Lemma 3.4 we have

V (f(x) + g(x)− b1xβ1) ≤ V (f) + 2(t− 1).

All together this gives V (f + g) ≤ 1 + V (f) + 2(t− 1) = V (f) + 2t− 1.

Proposition 3.6. [Ave09] If f ∈ R[x, y] has t non-zero terms, then

V (f(x, x+ 1)) ≤ 2t− 2.

Proof. Write f(x, y) =
∑n

k=1 ak(x)yαk , with 0 ≤ α1 < · · · < αn and ak(x) ∈ R[x]. Denote by tk
the number of non-zero terms of ak(x). Define

fk(x, y) =

n∑
j=k

aj(x)yαj−αk , k = 1, . . . , n,

and fn+1 = 0. Then fk(x, x+ 1) = (x+ 1)αk+1−αkfk+1(x, x+ 1) + ak(x) for k = 1, . . . , n− 1 and

fn(x, x + 1) = an(x). Therefore, V (fk(x, x + 1)) ≤ V (fk+1(x, x + 1)) + 2tk by Lemma 3.3 and

Lemma 3.4. Finally, V (f(x, x+ 1)) ≤ V (f1(x, x+ 1)) since f(x, x+ 1) = (x+ 1)α1f1(x, x+ 1). We

conclude that V (f(x, x+ 1))) ≤ −2 + 2(t1 + · · ·+ tn) = 2t− 2.

Proposition 3.7. Let f ∈ R[x, y] be a polynomial with t non-zero terms. Write it as f(x, y) =∑t
i=1 bix

βiyγi with 0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γt. If V (f(x, x+ 1)) = 2t− 2, then

N (bix
βi(x+ 1)γi) ⊂

◦
N (btx

βt(x+ 1)γt)

(in other words, βt < βi ≤ βi + γi < βt + γt) for i = 1, . . . , t− 1.

Proof. We use the proof of Proposition 3.6 keeping its notations. Write f(x, y) =
∑n

k=1 ak(x)yαk

with 0 ≤ α1 < · · · < αn and assume that V (f(x, x + 1)) = 2t − 2. It follows from the proof of

Proposition 3.6 that

V (fk(x, x+ 1)) = V (fk+1(x, x+ 1)) + 2tk , k = 1, . . . , n. (3.1.1)

Recall that fk(x, x+ 1) = (x+ 1)αk+1−αkfk+1(x, x+ 1) + ak(x) for k ≤ n− 1. By Lemma 3.5 and

(3.1.1) we get N (ak(x)) ⊂
◦
N ((x+ 1)αk+1−αkfk+1(x, x+ 1)) and thus

N (ak(x)(x+ 1)αk) ⊂
◦
N ((x+ 1)αk+1fk+1(x, x+ 1)) (3.1.2)



39 Chapter 3. A sharp bound for a plane curve and a line

for k = 1, . . . , n− 1. We now show by induction on n− k ≥ 1 that

◦
N ((x+ 1)αk+1fk+1(x, x+ 1)) ⊂

◦
N (an(x)(x+ 1)αn). (3.1.3)

Together with (3.1.2) this will imply N (ak(x)(x+ 1)αk) ⊂
◦
N (an(x)(x+ 1)αn) for k = 1, . . . , n− 1,

and thus N (bix
βi(x + 1)γi) ⊂

◦
N (btx

βt(x + 1)γt) for i = 1, . . . , t − 1. For n − k = 1 the inclusion

(3.1.3) is obvious. Since fk(x, x+1) = (x+1)αk+1−αkfk+1(x, x+1)+ak(x) and N (ak(x)) ⊂
◦
N ((x+

1)αk+1−αkfk+1(x, x + 1)), we get
◦
N (fk(x, x + 1)) =

◦
N ((x + 1)αk+1−αkfk+1(x, x + 1)). Assuming

(3.1.3) is true for k (hypothesis induction), this immediately gives
◦
N ((x + 1)αkfk(x, x + 1)) ⊆

◦
N (an(x)(x+ 1)αn) and thus (3.1.3) is proved for k − 1.

3.2 Proof of Theorem 3.1

We first recall the proof of the bound 6t − 4 in [Ave09]. Let f(x, y) =
∑t

i=1 bix
βiyγi ∈ R[x, y]

be a polynomial with at most t non-zero terms, and let a, b ∈ R. Set g(x) = f(x, ax + b). If

a = 0 or b = 0, then f has at most t non-zero terms and Descartes’ rule of signs implies that

either g = 0 or g has at most 2t − 1 ≤ 6t − 4 real roots (counted with multiplicities except for

the possible root 0). If ab 6= 0, then the real roots of f(x, ax + b) correspond bijectively to the

real roots of f(bx/a, b(x + 1)) = f̂(x, x + 1), where f̂(x, y) =
∑t

i=1 bia
−βibβi+γixβiyγi . Since this

bijection preserves multiplicities and maps the possible roots 0 and −b/a of g to the roots 0 and

−1 of f̂(x, x + 1), it suffices to consider the case a = b = 1, i.e. g(x) = f(x, x + 1). So we now

consider g(x) = f(x, x+ 1). Assume that g 6= 0 and denote by d the degree of g.

Descartes’ rule of signs and Proposition 3.6 imply that the number of positive roots of g

counted with multiplicities is at most 2t − 2. The roots of g in ] −∞,−1[ correspond bijectively

to the positive roots of g(−1 − x) = f(−1 − x,−x) =
∑t

i=1 bi(−1)βi+γixγi(x+ 1)βi . Therefore,

by Proposition 3.6 the number of roots (counted with multiplicities) of g in ] − ∞,−1[ cannot

exceed 2t − 2. Finally, the roots of g in ] − 1, 0[ correspond bijectively to the positive roots of

(x+1)dg( −xx+1 ) = (x+1)df( −xx+1 ,
1

x+1 ) =
∑t

i=1 bi(−1)βixβi(x+ 1)d−βi−γi . Thus, by Proposition 3.6

there are at most 2t− 2 such roots.

All together, this leads to the conclusion that g has at most 3(2t − 2) + 2 = 6t − 4 real roots

counted with multiplicities except for the possible roots 0 and −1 that are counted at most once.

We now start the proof of Theorem 3.1.

Set I1 =]0,+∞[, I2 =]−∞,−1[ and I3 =]− 1, 0[. For h ∈ R[x] define

VI1(h) = V (h) , VI2(h) = V (h(−1− x)) and

VI3(h) = V
(

(x+ 1)deg(h)h
( −x
x+ 1

))
.

By Descartes’ rule of sign the number of roots of h in Ii does not exceed VIi(h). To prove

Theorem 3.1, it suffices to show that

VI1(g) + VI2(g) + VI3(g) ≤ 3(2t− 2)− 3 (3.2.1)

Define polynomials

h1(x) = xdh

(
1

x

)
, h2(x) = (x+ 1)dh

( −x
x+ 1

)
and h3(x) = h(−1− x)
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so that VI1(h1) = VI1(h), VI1(h2) = VI3(h) and VI1(h3) = VI2(h).

Lemma 3.8. For any i, j, k such that {i, j, k} = {1, 2, 3}, we have

VIi(hi) = VIi(h) and VIi(hj) = VIk(h)

Proof. We have h1(−x− 1) = (−1)d(x+ 1)dh
(
− 1
x+1

)
. Therefore

V (h1(−x− 1)) = V

(
(x−1 + 1)dh

(
− 1

x−1 + 1

))
, thus

V (h1(−x− 1)) = V

((
x+ 1

x

)d
h
(
− x

x+ 1

))
= V

(
(x+ 1)dh

(
− x

x+ 1

))
,

and we get VI2(h1) = VI3(h). We have (x+ 1)dh1

(
− x

x+ 1

)
= (−x)dh(−1− x−1) from which we

obtain VI3(h1) = VI2(h).

Equalities VI2(h2) = VI2(h) and VI3(h2) = VI1(h) follow from

h2(−1− x) = (−x)dh(−1− x−1) and (x+ 1)dh2(− x
x+1 ) = h(x).

Finally, VI2(h3) = VI1(h) comes from h3(−x−1) = h(x) and VI3(h3) = VI3(h) is a consequence

of (x + 1)dh3(− x
x+1 ) = (x + 1)dh(− 1

x+1 ) and the equality V ((x + 1)dh(− 1
x+1 )) = VI3(h) shown

above.

We now proceed to the proof of (3.2.1). We already know that VIi(g) ≤ 2t−2 for i = 1, 2, 3. If

VIi(g) ≤ 2t− 3 for all i, then (3.2.1) is trivially true. With the help of Lemma 3.8, it suffices now

to show that if VI1(g) = 2t−2 then VI2(g) ≤ 2t−3, VI3(g) ≤ 2t−3, and VI2(g)+VI3(g) < 2(2t−3).

So assume VI1(g) = 2t− 2. Then by Proposition 3.7

βt < βi ≤ βi + γi < βt + γt, , i = 1, . . . , t− 1. (3.2.2)

We have g(−1−x) =
∑t

i=1 bi(−1)βi+γixγi(x+ 1)βi . Recall that VI2(g) = V (g(−x−1)) ≤ 2t−2 by

Proposition 3.6. From (3.2.2), we get γt > γi for i = 1, . . . , t− 1. It follows then from Proposition

3.7 that V (g(−x− 1)) ≤ 2t− 3.

Write g(−1−x) = g̃(−x−1)+bt(−1)βt+γtxγt(x+1)βt , and then g(−1−x)(x+1)−βt = g̃(−x−
1)(x+1)−βt +bt(−1)βt+γtxγt . We note that (3.2.2) implies βt < βi for i = 1, . . . , t−1, so that both

members of the previous equality are polynomials. Moreover, from (3.2.2) we also get βi−βt+γi <
γt, and thus γt does not belong to the Newton polytope of the polynomial g̃(−x − 1)(x + 1)−βt .

It follows that V (g(−1 − x)(x + 1)−βt) ≤ V (g̃(−x − 1)(x + 1)−βt) + 1. By Lemma 3.3 we have

V (g(−1− x)) ≤ V (g(−x− 1)(x+ 1)−βt). Therefore, V (g(−1− x)) ≤ V (g̃(−x− 1)(x+ 1)−βt) + 1.

On the other hand Proposition 3.6 yields V (g̃(−x− 1)(x+ 1)−βt) ≤ 2(t− 1)− 2 = 2t− 4.

Therefore, if V (g(−1− x)) = 2t− 3, then V (g̃(−x− 1)(x+ 1)−βt) = 2t− 4, and we may apply

Proposition 3.7 to g̃(−x− 1)(x+ 1)−βt in order to get

γi0 < γi ≤ γi + βi < γi0 + βi0 for all i = 1, . . . , t− 1 and i 6= i0, (3.2.3)

where i0 is determined by βi0 ≥ βi for i = 1, . . . , t− 1.

Starting with g1(x) = xdg(1/x) =
∑t

i=1 bix
d−βi−γi(x + 1)γi instead of g in the previous

computation, we obtain that if V (g1) = 2t− 2 then VI2(g1) ≤ 2t− 3 and if VI2(g1) = 2t− 3, then

the substitution of d− βi − γi for βi in (3.2.3) holds true:

γi1 < γi ≤ d− βi < d− βi1 for all i = 1, . . . , t− 1 and i 6= i1, (3.2.4)
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where i1 is determined by d− βi1 − γi1 ≥ d− βi − γi for i = 1, . . . , t− 1.

On the other hand, V (g) = V (g1) and V (g1(−x− 1)) = VI2(g1) = VI3(g) by Lemma 3.8. Thus

if V (g) = 2t − 2 then VI3(g) ≤ 2t − 3 and if VI3(g) = 2t − 3, then formula (3.2.4) holds true.

It turns out that (3.2.3) and (3.2.4) are incompatible. Indeed, if (3.2.3) and (3.2.4) hold true

simultaneously, then i0 = i1 but then (3.2.4) implies that γi0 +βi0 < γi+βi for all 1, . . . , t−1 with

i 6= i0 which contradicts (3.2.3). Consequently, if V (g) = VI1(g) = 2t − 2, then VI2(g) ≤ 2t − 3,

VI3(g) ≤ 2t− 3 and VI2(g) + VI3(g) < 2(2t− 3).

3.3 Optimality

We prove that the bound in Theorem 3.1 is sharp for t = 3 (Theorem 3.2). We look for a polynomial

P ∈ R[x, y] with three non-zero terms such that P (x, x+ 1) has nine real roots distinct from 0 and

−1. It follows from the previous section that if such P exists then, either P (x, x + 1) has three

roots in each interval I1, I2 and I3, or P (x, x + 1) has four roots in one interval, three roots in

another interval, and two roots in the last one. We give necessary conditions for the second case,

which thanks to Lemma 3.8 reduces to the case where P (x, x + 1) has four roots in I1 =]0,+∞[,

three roots in I3 =]− 1, 0[ and two roots in I2 =]−∞,−1[.

Multiplication of P by a monomial does not alter the roots of P (x, x + 1) in R \ {0,−1}, so

dividing by the smallest power of x, we may assume that P has the following form

P (x, y) = ayl1 + bxk2yl2 + xk3yl3 ,

where k2, k3, l1, l2, l3 are nonnegative integer numbers and a, b are real numbers.

Lemma 3.9. If P (x, x + 1) has four real positive roots, then k2 > 0, k3 > 0, l1 > l2 + k2 and

l1 > l3 + k3.

Proof. If P (x, x+1) has four real positive roots, then V (P (x, x+1)) = 4. Rewriting P (x, x+1) =∑3
i=1 bix

βi(x + 1)γi with 0 ≤ γ1 ≤ γ2 ≤ γ3, Proposition 3.7 yields β3 < βi ≤ βi + γi < β3 + γ3

for i = 1, 2. Since k2 and k3 are nonnegative, we get β3 = 0, k2, k3 > 0 and β3 + γ3 = γ3 = l1, so

l1 > max(l2 + k2, l3 + k3).

Since l1 > l2 and l1 > l3, we may divide P (x, x+1) by (x+1)l2 or (x+1)l3 to get a polynomial

equation with the same solutions in R \ {0,−1}. So without loss of generality we may assume that

P (x, x+ 1) = a(x+ 1)l1 + bxk2(x+ 1)l2 + xk3 , (3.3.1)

where k2, k3 > 0, l2 ≥ 0, l1 > k2 + l2 and l1 > k3.

Lemma 3.10. Assume that the polynomial (3.3.1) has four roots in I1, and three roots in I3 or

I2. Then k3 does not belong to the interval [k2, k2 + l2]. Moreover, we have a < 0 and b > 0.

Proof. We prove that if k2 ≤ k3 ≤ k2 + l2, then (3.3.1) has at most two roots in I2 and in I3.

The roots in I2 are in bijection with the positive roots of

P (−x− 1,−x) = (−1)l1axl1 + (−1)k2+l2bxl2(x+ 1)k2 + (−1)k3(1 + x)k3 .

Recall that l2 ≥ 0. If k2 ≤ k3 ≤ k2 + l2 then Proposition 3.7 yields V ((−1)k2+l2bxl2(x + 1)k2 +

(−1)k3(1 + x)k3) ≤ 1. Now, since l1 > k2 + l2 and l1 > k3, we get V (P (−x− 1,−x)) ≤ 2, and thus

(3.3.1) has at most two roots in I2.
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The roots in I3 are in bijection with the positive roots of

(1 + x)l1P (
−x
x+ 1

,
−x
x+ 1

+ 1) = a+ b(−1)k2xk2(1 + x)l1−k2−l2 + (−1)k3xk3(1 + x)l1−k3

From k3 ≤ k2 + l2, we get l1 − k2 − l2 ≤ l1 − k3. Thus, Proposition 3.7 together with k2 ≤
k3 yields V (b(−1)k2xk2(1 + x)l1−k2−l2 + (−1)k3xk3(1 + x)l1−k3) ≤ 1. From k2, k3 > 0 we get

V ((1 + x)l1P ( −xx+1 ,
−x
x+1 + 1)) ≤ 2, and thus (3.3.1) has at most two roots in I3.

Finally, if (3.3.1) has four positive roots, then obviously ab < 0. If k3 does not belong to

[k2, k2 + l2] and a > 0, then V ((x + 1)l1 + bxk2(x + 1)l2 + xk3) = V ((x + 1)l1 + bxk2(x + 1)l2)

(recall that k2 ≤ k2 + l2 < l1). But the second sign variation is a most two by Proposition 3.6. We

conclude that a < 0 and b > 0.

Lemma 3.11. Assume that the polynomial (3.3.1) has four roots in I1, two roots in I2 and three

roots in I3. Assume furthermore that k3 < k2. Then, l1 is odd, k2 is odd, k3 is even and l2 is

even.

Proof. Since (3.3.1) has exactly nine real roots counted with multiplicity, its degree l1 is odd. We

have already seen that if (3.3.1) has four roots in I1 =]0,+∞[, two roots in I2 =] −∞,−1[ and

three roots in I3 =]− 1, 0[, then a < 0, b > 0, l1 > l2 and k3 /∈ [k2, k2 + l2]. Assume from now on

that k3 < k2.

Since (3.3.1) has two roots in I2 =]−∞,−1[, we have V (P (−x− 1,−x)) ≥ 2, where P (−x−
1,−x) = (−1)k3(1 + x)k3 + (−1)k2+l2bxl2(x+ 1)k2 + (−1)l1axl1 . But since k3 < k2 ≤ k2 + l2 < l1,

we get that (−1)k3 · (−1)k2+l2b < 0 and (−1)k2+l2b · (−1)l1a < 0. Using a < 0 and b > 0, we obtain

that k2 + l2 is odd and k3 is even.

Since (3.3.1) has three roots in I3 =] − 1, 0[, we have V ((1 + x)l1P ( −xx+1 ,
−x
x+1 + 1)) ≥ 3,

where (1 + x)l1P ( −xx+1 ,
−x
x+1 + 1) = a + b(−1)k2xk2(1 + x)l1−k2−l2 + (−1)k3xk3(1 + x)l1−k3−l3 . We

know that k3 is even and that b > 0. Thus in order to get coefficients with different signs in

b(−1)k2xk2(1+x)l1−k2−l2 +(−1)k3xk3(1+x)l1−k3−l3 , the integer k2 should be odd. Since we know

that k2 + l2 is odd, this gives that l2 is even.

Assume now that (3.3.1) has four roots in I1, two roots in I2 and three roots in I3. Then a < 0,

b > 0 and k3 does not belong to [k2, k2 + l2] by Lemma 3.10. Assume that k3 < k2. Then l1 is

odd, k2 is odd, k3 is even and l2 is even by Lemma 3.11. The roots of (3.3.1) are solutions to the

equation f(x) = −a, where f(x) = bxk2(1 + x)l2−l1 + xk3(1 + x)−l1 . Since the rational function f

has no pole outside {−1, 0}, by Rolle’s Theorem its derivative has at least three roots in I1, one

root in I2 and two roots in I3. We compute that f ′(x) = 0 is equivalent to Φ(x) = 1, where Φ is

the rational map

Φ(x) =
−bxk2−k3(1 + x)l2A1(x)

A2(x)
, (3.3.2)

with A1(x) = (k2 + l2− l1)x+k2 and A2(x) = (k3− l1)x+k3. From 0 < k3 < k2, l2 ≥ 0 and l1 > 0,

we obtain that the roots of A1 and A2 satisfy 0 < k3
l1−k3 <

k2
l1−k2−l2 . Moreover, the roots of Φ are

−1 with even multiplicity l2, 0 with odd multiplicity k2 − k3 and the positive root of A1 (which is

a simple root of Φ). The poles of Φ are the positive root of A2 and the point at infinity which has

multiplicity deg(Φ)− 1 if we homogeinize Φ into a rational map from the Riemann sphere CP 1 to

itself.
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Figure 3.1: A real dessin d’enfant for ϕ.

We find exact values of coefficients and exponents of (3.3.2) in the following way. Note that

the exponents of (3.3.2) are independent of l1. We first choose small values k2 = 5, k3 = 2, l2 = 2

satisfying the above parity conditions. Then, we look for a function

ϕ(x) =
cx3(x+ 1)2(x− ρ1)

x− ρ2
, (3.3.3)

such that c is some real constant, 0 < ρ2 < ρ1 and ϕ(x) = 1 has three solutions in I1, one solution

in I2 and two solutions in I3.

The existence of such a function ϕ is certified by Figure 3.1 thanks to Proposition 2.2. Figure

3.1 shows HΓ contained in one connected component of CP 1 \RP 1. From Figure 3.1, we see that

0 < ρ2 < ρ1 and that ϕ has the desired number of inverse images (letters r) of 1 in each interval

Ii.

Now we want to identify (3.3.3) and (3.3.2). Recall that k2 = 5, k3 = 2, l2 = 2 are fixed. We

look at the function x3(x+1)2(x−ρ1)
x−ρ2 , where ρ1 = k2

l1−k2−l2 and ρ2 = k3
l1−k3 , and increase l1 so that

some level set of this function has three solutions in I1, one solution in I2 and two solutions in

I3. It turns out that l1 = 17 is large enough and the level set gives the value 29 for b. Finally,

integrating Φ and choosing a = −0, 002404, we get

− 0.002404(x+ 1)17 + 29x5(x+ 1)2 + x2 (3.3.4)

for (3.3.1). This polynomial has four roots in I1, two roots in I2 and three roots in I3. This has

been computed using SAGE version 6.6 which gives the following approximated roots: 0.18859,

0.22206, 0.25196, 0.44416 in I1, −3.96032, −1.15048 in I2, and −0.61459, −0.58528,−0.03594 in

I3.

Multiplying this polynomial by x(x + 1) gives a polynomial of the form P (x, x + 1) (where

P ∈ R[x, y] has three non-zero terms) having eleven real roots.





Chapter 4

Positive intersection points of a
trinomial and a t-nomial curves

4.1 Introduction and statement of the main results

Consider a system

f = g = 0, (4.1.1)

where f has t ≥ 3 non-zero terms and g has three non-zero terms. We assume in this chapter

that (4.1.1) has a finite number of solutions, and denote by S(3, t) the maximal number of non-

degenerate positive solutions such a system can have. We prove the following result in Section 4.2.

Theorem 4.1. We have S(3, t) ≤ 3 · 2t−2 − 1.

Consider now a function

φ(x) =
xα(1− x)βP (x)

Q(x)
,

where α, β ∈ Q, and both P and Q are real polynomials. Using real dessins d’enfant, we prove in

Section 4.3 the following result.

Theorem 4.2. We have ]{x ∈]0, 1[ |φ(x) = 1} ≤ degP + degQ+ 2.

We say that two triangles ∆1 and ∆2 in R2 alternate when any two consecutive edges of

their Minkowski sum ∆1 + ∆2 are not translate of two consecutive edges of ∆1 or of ∆2 (see

Definition 4.30). We prove in Section 4.4 the following result.

Theorem 4.3. If a system of two trinomials in two variables has 5 positive solutions, then the

Newton triangles of the respective equations do not alternate.

4.2 Proof of Theorem 4.1

Define the polynomials f and g of (4.1.1) as
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f(u, v) =

t∑
i=1

aiu
αivβi and g(u, v) =

3∑
j=1

bju
γjvδj , (4.2.1)

where all ai and bi are real.

We suppose that the system (4.1.1) has positive solutions, thus the coefficients of g have

different signs. Therefore without loss of generality, let b1 = −1, b2 > 0 and b3 > 0. Since

we are looking for positive solutions of (4.1.1) with non-zero coordinates, one can assume that

γ1 = δ1 = 0. Furthermore, the monomial change of coordinates (u, v) → (x, y) of (C∗)2 defined

by b2u
γ2vδ2 = x and b3u

γ3vδ3 = y preserves the number of positive solutions. Therefore, we are

reduced to a system

t∑
i=1

cix
kiyli = −1 + x+ y = 0, (4.2.2)

where ci is real for i = 1, · · · , t, and all ki and li are rational numbers.

We now look for the positive solutions of (4.2.2). It is clear that since both x and y are positive,

then x ∈]0, 1[. Substituting 1− x for y in (4.2.2), we get

F (x) :=

t∑
i=1

cix
ki(1− x)li , (4.2.3)

so that the number of positive solutions of (4.1.1) is equal to that of roots of F in ]0, 1[. For any

d ∈ N, denote by Rd[x] the set of real polynomials of degree at most d.

Lemma 4.4. Consider a function defined by h(x) =
s∑
i=1

bix
mi(1−x)nihi,d(x), where h1,d, . . . , hs,d ∈

Rd[x]. Then for all r ∈ N, there exist h1,d+r, . . . , hs,d+r ∈ Rd+r[x] such that the r-th derivative of

h is defined by

h(r)(x) =

s∑
i=1

xmi−r(1− x)ni−rhi,d+r(x).

Proof. One computes that

(xm(1− x)nh(x))
′

= xm−1(1− x)n−1 · [((n−m)x+m)h(x) + x(1− x)h′(x)] .

Define f1, . . . , ft inductively by f1(x) = x−k1(1− x)−l1F (x) and

fj+1(x) = xkj−kj+1+2j−1

· (1− x)lj−lj+1+2j−1

· f (2j−1)
j (x) , j = 1, . . . , t− 1.

Lemma 4.5. For j = 1, . . . , t, there exist polynomials hj,dj , . . . , ht,dj ∈ Rdj [x] such that dj =

2j−1 − 1,

fj(x) = hj,dj (x) +

t∑
i=j+1

xki−kj (1− x)li−ljhi,dj for j = 1, . . . , t− 1 (4.2.4)

and ft = ht,dt(x).
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Proof. This follows easily from Lemma 4.4.

Let Nj denote the set ]{x ∈]0, 1[ | fj(x) = 0} for j = 1, . . . , t. Note that N1 = ]{x ∈
]0, 1[ | F (x) = 0}. Rolle’s Theorem implies directly that

Nj ≤ Nj+1 + 2j−1 for j = 1, . . . , t− 1. (4.2.5)

Moreover, Nt ≤ dt = 2t−1 − 1 by Lemma 4.5. Consequently, we get

]{x ∈]0, 1[ | F (x) = 0} = N1 ≤
t−2∑
j=1

2j−1 +Nt−1 = 2t−2 − 1 +Nt−1. (4.2.6)

By (4.2.5), we have Nt−1 ≤ Nt + 2t−2 ≤ 2t−1 − 1 + 2t−2 (since Nt ≤ 2t−1 − 1), which together

with (4.2.6) gives

]{x ∈]0, 1[ | F (x) = 0} ≤ 2t − 2.

This is the bound obtained in [LRW03]. The sharper bound that we give is obtained by improving

the bound on Nt−1. This improvement uses the fact that ft−1 is a rational function, thus one can

use a different approach to get a sharp bound on Nt−1. We have already seen that

ft−1(x) = −Q(x) + xkt−kt−1(1− x)lt−lt−1P (x),

where P,Q ∈ Rdt−1
[x] with dt−1 = 2t−2 − 1. We have

ft−1(x) = 0 ⇐⇒ xkt−kt−1(1− x)lt−lt−1P (x)

Q(x)
= 1.

Therefore applying Theorem 4.2, we get Nt−1 ≤ 2t−1 − 2 + 2 = 2t−1. Finally, by (4.2.5), we get

]{x ∈]0, 1[ | f(x) = 0} ≤ 2t−1 + 2t−2 − 1 = 3 · 2t−2 − 1,

which finishes the proof of Theorem 4.1 assuming Theorem 4.2.

4.3 Proof of Theorem 4.2

Consider the function

φ(x) =
xα(1− x)βP (x)

Q(x)
,

where α, β ∈ Q and P,Q ∈ R[x]. Let m be a positive integer such that mα and mβ are integers.

Then ϕ := φm is a rational function from C to C. Here and in the rest of this chapter, we see the

source and target spaces of ϕ as the affine charts of CP 1 given by the non-vanishing of the first

coordinate of homogeneous coordinates and denote with the same symbol ϕ the rational function

from CP 1 to CP 1 obtained by homogenization with respect to these coordinates. In what follows,

we apply the theory of Groethendieck’s dessin d’enfant to the rational function ϕ.

Denote by Γ := ϕ−1(RP 1). Since the graph is invariant under complex conjugation, it is

determined by its intersection with one connected component H (for half) of CP 1 \RP 1. In most

figures we will only show one half part H ∩Γ together with RP 1 = ∂H represented as a horizontal

line. Moreover, for simplicity, we omit the arrows. The reader may refer to Chapter 2 for more

details on real dessins d’enfant.

Definition 4.6. Any root or pole of ϕ is called a special point (of ϕ), and any other point of Γ

is called non-special.
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4.3.1 Reduction to a simpler case

We first need a definition.

Definition 4.7. Let a, b be two critical points of ϕ i.e. vertices of Γ. We say that a and b are

neighbours if there is a branch of Γ \ RP 1 joining them such that this branch does not contain

any special or critical points of ϕ other than a or b.

In this section, we show how to reduce to the case where ϕ satisfies the following properties

(i) All roots of P and Q are special points of ϕ with the same

multiplicity m.

(ii) Each non-special critical point of ϕ has multiplicity two and is not

a solution of ϕ = 1.

(iii) All real non-special critical points of ϕ are neighbours to real critical

points of ϕ.

(4.3.1)

We will introduce an algorithm that transforms any dessin d’enfant Γ of ϕ to a dessin d’enfant

Γ′ of a function satisfying the three properties mentioned above. Moreover, this transformation

does not reduce the number of real letters r of ϕ. Therefore, to prove Theorem 4.2, it suffices to

consider a function ϕ satisfying (4.3.1).

This algorithm is a series of transformations which are devided into two types. The first type,

called type a), reduces the valencies of all critical points so they verify the conditions (i) and (ii).

The second type, called type b), transforms a couple of conjugate points p (resp. q, r, non-special

critical points) into a point p (resp. q, r, non-special critical point) which belongs to RP 1.

4.3.1.1 Transformation of type a)

Consider a critical point α of ϕ, which does not belong to {0, 1,∞}.

• Assume that α ∈ RP 1. Let Uα be a small neighborhood of α in CP 1 such that Uα \ {α} does

not contain letters r, critical points or special points.

Assume that α is a special point (a root or a pole of ϕ). Then the valency of α is equal to

2km for some natural number k. We transform the graph Γ inside Uα as in Figure 4.1. In the

new graph Γ′, the neighborhood Uα contains two real special points and a real non-special critical

point of ϕ (and no other letters p, q, r and vertices). If α is a root (resp. pole) of ϕ then both

special points are roots (resp. poles) of ϕ with multiplicities m and (k − 1)m. Moreover, the new

non-special critical point has multiplicity 2. It is obvious that the resulting graph Γ′ is still a real

dessin d’enfant.

Assume that α is a non-special critical point that is a letter r (a root of ϕ−1). Then the valency

of α is equal to 2k for some natural number k ≥ 2. We transform the graph Γ as in Figure 4.2.

In the new graph Γ′, the neighborhood Uα contains two letters r of multiplicity 2(k − 1) and 1

respectively, and one non-special critical point of multiplicity 2, which is not a letter r (and no

other letters p, q, r or vertices).

Assume that α is a non-special critical point that is not a letter r. Then the valency of α

is equal to 2k for some natural number k ≥ 3. We transform the graph Γ such that in the new

graph Γ′, the neighborhood Uα contains two non-special critical points, which are not letters r,
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with multiplicities 2 and (k − 1) (and no other letters p, q, r or vertices).

• Assume now that α /∈ RP 1. Consider a small neighborhood Uα of α and the corresponding

neighborhood of its conjugate ᾱ (the image of Uα by the complex conjugation). Assume that both

neighborhoods are disjoint and both Uα \ {α} and Uᾱ \ {ᾱ} do not contain letters r, critical points

or special points. Recall that the valency of α is even. Choose two branches of Γ∩Uα starting from

α such that the complement of these two branches in Uα has two connected components containing

the same number of branches of Γ ∩ Uα. We transform Γ ∩ Uα similarly as in the case α ∈ RP 1

and do the corresponding transformation of the image of Γ ∩ Uα by the complex conjugation.

Assume that α is a special point (a root or a pole of ϕ). We transform the graph Γ inside Uα
as in Figure 4.3. In Uα, the resulting graph Γ′ contains two special points of ϕ with multiplicities

m and (k − 1)m respectively, and one non-special critical point with multiplicity 2 (and no other

letters p, q, r or vertices), all of which belong to the previously chosen two branches.

Assume that α is a non-special critical point that is a letter r (a root of ϕ − 1). Then the

valency of α is equal to 2k for some natural number k ≥ 2. In the new graph Γ′, the neighborhood

Uα contains two letters r of multiplicity 2(k − 1) and 1 respectively, and one non-special critical

point of multiplicity 2, which is not a letter r (and no other letters p, q, r or vertices), all of which

belong to the previously chosen branches.

Assume that α is a non-special critical point that is not a letter r. Then the valency of α is

equal to 2k for some natural number k ≥ 3. We transform the graph Γ such that in the new graph

Γ′, the neighborhood Uα contains two non-special critical points, which are not letters r and which

belong to the previously chosen two branches, with multiplicities 2 and (k − 1) respectively (and

no other letters p, q, r or vertices).

Figure 4.1: A transformation of type a) where α is a real root of P , k = 3 and m = 4.
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Figure 4.2: A transformation of type a) where α is a real root of ϕ−1 with multiplicity 5.

Figure 4.3: A transformation of type a) where α is a complex root of Q, k = 3 and m = 2.
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Figure 4.4: A transformation of type b) where α is a letter p, and m = 4 .

We make this type of transformation to every point α mentioned before. Repeating this process

several times gives eventually the conditions (i) and (ii).

4.3.1.2 Transformation of type b)

Consider a point α ∈ Γ\RP 1, which is either a letter p, q, r or a non-special critical point, together

with its conjugate ᾱ. Note that we do not assume that α is a vertex of Γ. Assume that α and ᾱ

are both joined by a branch of Γ to a real non-special critical point c of multiplicity 2. Assume

furthermore that both branches do not contain letters p, q, r or non-special critical points (if α is

a vertex of Γ, this means that α and c are neighbours), and that c is not a root of ϕ − 1. Define

e (resp. ē) to be the complex edges joining α (resp. ᾱ) to c. Consider a small neighborhood Uc
of c such that Uc contains both α and ᾱ. Moreover, assume that Uc does not contain letters r,

special points or critical points different from α, ᾱ and c. We transform Γ into a graph Γ′ as in

the Figure 4.4. In Uα, the new graph Γ′ contains only one vertex β, which is a letter p (resp. q, r,

non-special critical point) if so is α (and no other letters p, q, r or vertices). Moreover, the valency

of β is equal to two times that of α.

4.3.1.3 The algorithm

The algorithm goes as follows. We achieve conditions (i) and (ii) first by making transformations

of type a). If there is no α ∈ Γ \RP 1 as in Section 4.3.1.2, then the condition (iii) is also satified,

and we are done. Otherwise, we perform the transformation of type b), this creates one critical

point which violates at least one of conditions (i) or (ii). Then, we perform a transformation of

type a) around this real critical point. Repeating this process sufficiently many times gives us

eventually conditions (i), (ii) and (iii).

4.3.2 Analysis of dessins d’enfant

In what follows of this section, we assume that ϕ satisfies conditions (i), (ii) and (iii).

Definitions and Notations 4.8. Define I0 :=]0, 1[, and denote by the same letter p0 (resp. q0)

any root (resp. pole) of φ|I0 . Define [ as the number of connected components of the graph of φ|I0 ,

and [+ as the number of connected components of the graph of φ|I0 situated above the x-axis.
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Remark 4.9. Note that the functions φ and ϕ = φm have the same [ but not necessarily same [+.

Let S0 be the total number of roots and poles of φ|I0 .

Lemma 4.10. We have bS0

2
c ≤ [+ ≤ b

S0

2
c+ 1.

Proof. The roots and poles in I0 of φ are simple, so the sign of φ changes when passing through

one of them.

Remark 4.11. If S0 is even and [+ =
|S0|

2
+ 1, then the closest branch to 0 (resp. to 1) of the

graph of φ in I0 is above the x-axis.

Note that

φ′(x) =
xα−1(1− x)β−1H(x)

Q2(x)

where H(x) is

αP (x)Q(x) + (P ′(x)Q(x)− P (x)Q′(x)− (α+ β)P (x)Q(x))x+ (P (x)Q′(x)− P ′(x)Q(x))x2,

and thus degH ≤ degP + degQ + 1. Therefore, since we assumed that all non-special critical

points of φ are of multiplicity two, the polynomial H has at most degP + degQ+ 1 simple roots.

One easily computes that φ and ϕ = φm have the same set E of non-special critical points (recall

that |E| ≤ degP + degQ + 1). Moreover, φ(k)(x) = 0 ⇔ (φm)(k)(x) = 0. Hence a critical point

of φ with non-zero critical value is a critical point of ϕ with also non-zero critical value and same

multiplicity, and vice versa. Note that if x is a root (simple by assumption) of P (resp. Q), then

x is a special point of φm of multiplicity m, thus corresponds to a vertex of Γ = (φm)−1(RP 1) of

valency 2m.

Set B = (φ−1(0, 1,∞) ∪ { non-special critical points }) ∩R.

Definition 4.12. A real non-special critical point n is called useful if among the two closest

points in B, there is a letter r (See Figure 4.5).

Figure 4.5: The point n is a useful non-special critical point.

Definition 4.13. Consider two real non-special critical points x1 and x2 in I0 which are neighbours

and such that ]x1, x2[ does not contain non-special critical points. Furthermore, consider the disc

D in CP 1 containing ]x1, x2[ with boundary given by the union of the complex arc of Γ joining x1

to x2 and its conjugate. Then the flattening of Γ with respect to ]x1, x2[ is the dessin d’enfant

obtained by collapsing the complex conjugate branches joining x1 and x2 to ]x1, x2[ and forgetting

all the connected components of Γ contained in D. If there is a letter r in the boundary of D\RP 1,

then this letter and its conjugate are transformed into a single letter r ∈]x1, x2[ (see Figure 4.6).
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Recall that all non-special critical points of φ have multiplicity two. In particular, if it is real,

such a point has only one neighbor.

Figure 4.6: Flattening for m = 2.

Figure 4.7: In this example, m = 1 and [x1, x2] contains three useful non-special critical
points, four roots and four poles of ϕ.
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Proposition 4.14. Let x1, x2 ∈ I0 =]0, 1[ be two non-special critical points which are neighbours.

Assume that all non-special critical points in ]x1, x2[ are neighbours only to each other. Then the

number of roots of ϕ is equal to that of the poles of ϕ in ]x1, x2[, and this number is bigger than

or equal to the number of useful critical points in [x1, x2] (See Figure 4.7).

Proof. Suppose first that ]x1, x2[ does not contain non-special critical points. Then the number of

roots (letters p) and poles (letters q) in ]x1, x2[ are equal by the cycle rule (See Figure 4.8).

Figure 4.8: The function ϕ has the same number of roots and poles in ]x1, x2[.

Moreover, x1 and x2 cannot both be useful non-special critical points, again since otherwise

this contradicts the cycle rule.

Figure 4.9: Having both non-special critical points useful contradicts the cycle rule.

Assume now that ]x1, x2[ contains non-special critical points. Consider two non-special critical

points y1, y2 ∈ [x1, x2] which are neighbours and such that ]y1, y2[ does not contain non-special

critical points. We have already seen that y1 and y2 cannot both be useful, and that ]y1, y2[ contains

the same non-zero number of letters p and q. Thus it suffices to prove the result for the dessin

d’enfant obtained by flattening Γ with respect to ]y1, y2[. Note that the number of non-special

critical points in ]x1, x2[ strictly decreases after such flattening. Therefore, we are reduced to the

case where ]x1, x2[ does not contain non-special critical points.

Recall that all letters p and q, which are different from 0, 1 or ∞, have the same valency 2m.

Lemma 4.15. Let x1, x2 ∈ I0 be critical points which are neighbours and such that ]x1, x2[ does

not contain non-special critical points. If one endpoint of [x1, x2] is a non-special critical point,

then both x1, x2 are non-special critical points.
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Figure 4.10: No part of Γ can have this configuration given both critical points are in I0.

Proof. We argue by contradiction. Assume that ]x1, x2[=]p̃, c[ where c is a non-special critical

point and p̃ is a root of P (the case where instead of p̃ we have a root of Q is symmetric). Consider

the open disk D which contains ]p̃, c[ and which is bounded by the complex branch of Γ joining

p̃ to c together with the conjugate branch. Consider the set of special points in D ∪ {p̃} together

with the branches of Γ ∩ (D ∪ p̃) joining letters p to letters q and not containing any other special

points (a branch of Γ is a subset homeomorphic to an interval). This gives a bipartite graph G.

Therefore, the total degree of letters p and the total degree of letters q in G are equal. Denote by

Np (resp. Nq) the number of letters p (resp. letters q) contained in D∪{p̃}. Since G is a bipartite

graph, we have

2mNq = 2m(Np − 1) + deg p̃,

where deg p̃ is the number of branches of G adjacent to p̃, and thus we have 1 ≤ deg p̃ ≤ 2m− 3.

Therefore 2m(Np −Nq) = 2m − deg p̃, which is impossible. Indeed, |2m(Np −Nq)| is either zero

or greater than or equal to 2m, which is not the case for |2m− deg p̃|.

Lemma 4.16. Let α be a non-special critical point in I0, and β ∈ R be its neighbor. If β is a root

(letter p) or a pole (letter q) of ϕ, then β /∈ I0.

Proof. Assume that β ∈ R is a root of ϕ (a letter p), and let us prove that β /∈ I0 (the case where β

is a pole of ϕ is symmetric). Performing flattening if necessary, we may suppose that the remaining

non-special critical points in [α, β] are neighbours to special critical points in [α, β]. Indeed, since

non-special critical points cannot be neighbours to complex special critical points. Consider an

open interval J ⊂ [α, β] with endpoints a non-special critical point and a special critical point

which are neighbours, and such that J does not contain non-special critical points. Note that if

]α, β[ does not contain non-special critical points, then it suffices to consider J =]α, β[. If β ∈ I0,

then the existence of J contradicts Lemma 4.15.

By definition, useful critical points of ϕ have positive critical value. However, when m is even,

some of the non-special useful critical points of ϕ = φm may correspond to non-special critical

points of φ with negative critical value.

Definition 4.17. A useful critical point x of ϕ = φm is called positive if φ(x) > 0.

These useful positive critical points of φm will later play a key role via the following Lemma.

Lemma 4.18. Let U be the set of useful positive non-special critical points in I0 and let N be the

number of solutions of φ(x) = 1 in I0. Then N ≤ [+ + |U |.
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Proof. Let C be a connected component of the graph of φ|I0 situated above the x-axis. Let I ⊂ I0
be the image of C under the vertical projection. It suffices to prove that in I, the number of

solutions of φ(x) = 1 is bounded above by one plus the number of useful positive critical points.

If this number of solutions is zero or one, the bound is trivial. Otherwise, between two con-

secutive solutions of φ(x) = 1 in I, there is at least one useful positive critical point by Rolle’s

Theorem.

In what follows, by p1 (resp. q1) we mean any real root (resp. pole) of ϕ outside ]0, 1[.

Lemma 4.19. Let u0 and v0 be two non-special critical points in I0 which are neighbours to the

same point p1 (resp. q1). Then the number of useful positive critical points of ϕ, contained in

[u0, v0], is less than or equal to one plus half of the total number of roots (letters p) and poles

(letters q) of ϕ in ]u0, v0[.

Proof. We only prove the result for the point p1 (the case for q1 is symmetric). If there are no

non-special critical points inside ]u0, v0[, then the result is clear by the cycle rule (see Figure 4.11).

Figure 4.11: An example of a special point outside I0 that is a neighbor to two non-special
critical points in I0.

Using Proposition 4.14 and flattenings of Γ if necessary, we may assume that [u0, v0] does

not contain non-special critical points that are neighbours. Then, by Lemma 4.16, the remaining

non-special critical points in [u0, v0] are neighbours to p1. Indeed, by condition (iii) of (4.3.1), real

non-special critical points cannot be neighbours to complex special points. The cycle rule implies

that between two consecutive non-special critical points in [u0, v0], the total number of special

points (letters p, q) is odd. It follows that φ takes values of opposite signs at two consecutive

non-special critical points in [u0, v0]. The result follows then as any interval with endpoints two

consecutive non-special critical points contains at least one special point.

Lemma 4.20. Assume that p1 (resp. q1) ∈ {0, 1}, and let c be the nearest non-special critical

point in I0 to p1 (resp. q1) such that c and p1 (resp. c and q1) are neighbours. Then in the open

interval I with endpoints c and p1 (resp. c and q1), the number of poles (resp. roots) is equal to

the number of roots (resp. poles) plus one.

Proof. We only prove the case for p1 since the case for q1 is symmetric. By Proposition 4.14, we

only count the remaining special points in I after flattenning Γ with respect to all non-special

critical points in I which are neighbours. Note that by Lemma 4.16 and condition (iii) of (4.3.1),

there do not exist non-special critical points in I after this flattening. Therefore there should be

one root between two consecutive poles of φ and vice-versa in I. Finally, by the cycle rule, the

nearest special points to c and to p1 in I should both be letters q.
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We now categorize the non-special critical points in I0 and the special critical points in R.

Definition 4.21. We first divide the set S1 of special points outside I0 in three disjoint subsets:

• S1,0 (resp. S1,1 , S1,2) is the set of special points in R\I0 which have no (resp. exactly one, at

least two) non-special critical points in I0 as neighbours.

Similarly, we divide the set S0 of special points in I0 into three disjoint subsets:

• S0,0 is the set of special points in I0 which are situated between two non-special critical points in

I0 that are neighbours. Note that the points of S0,0 are those of S0 which disappear after flattenings.

• S0,2 is the set of special points in I0 which are not in S0,0 and which are contained in an

interval with two non-special useful critical points that are neighbours of a same point in S1,2 (see

Figure 4.12).

Figure 4.12: A point q ∈ S1,2 and its neighbours: p1 ∈ S0,2 and two useful critical points
c1 and c2.

• S0,1 := S0\(S0,0 ∪ S0,2).

Finally, the set U of useful positive critical points in I0, is divided as follows:

• US1,1 (resp. US1,2) is the set of useful positive critical points in I0 that are neighbours to points

of S1,1 (resp. S1,2).

• UN0 (resp. UN1) is the set of useful positive critical points in I0 that are neighbours to non-special

critical points in I0 (resp. outside I0).

Remark 4.22. Note that by definition, we have |US1,1| ≤ |S1,1|.

Proposition 4.23. We have |US1,2| ≤
|S0,2|

2
+ |S1,2| and |UN0| ≤

|S0,0|
2

.

Proof. Let us prove the first inequality. Doing flattenings if necessary we may assume that S0,0 = 0.

Then |US1,2| ≤
|S0,2|

2
+ |S1,2| follows directly from Lemma 4.19 applied to each point of S1,2

together with the biggest interval [u0, v0] such that u0 and v0 are non-special critical points which

are neighbours to this point in S1,2 (see Figure 4.13).
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Figure 4.13: There exist elements of S0,2 contained in each of I1 and I2.

Let us now prove that |UN0| ≤
|S0,0|

2
. For each point c ∈ UN0, consider its neighbor c̃ in I0

(c̃ is a non-special critical point). By Lemma 4.16 and condition (iii) of (4.3.1), the non-special

critical points of ϕ between c and c̃ are only neighbours to each other. Applying Proposition 4.14

to each such interval [c̃, c] (or [c, c̃]) which is maximal in the sense that it is not contained in another

interval of the same type (with endpoints a useful positive critical point and a non-special critical

point in I0 which are neighbours), we get |UN0| ≤
|S0,0|

2
.

Definition 4.24. Let Γ be a dessin d’enfant and x ∈ Γ∩RP 1. A blowing up of Γ at x is the new

real dessin d’enfant obtained by adding a small circle C in CP 1 \Γ (together with its conjugate C)

which contains x, does not intersect Γ \ {x}, and contains letters p, q, r on C \ {x} such that the

cycle rule holds for C and its conjugate (see Figure 4.14). A blowing down of a dessin d’enfant

is the inverse operation.

Figure 4.14: The two blowing operations used on a dessin d’enfant.

Lemma 4.25. Let D be a connected component of CP 1\Γ such that its boundary ∂D contains at

least one real non-special critical point. Then ∂D contains at least two real special points.

Proof. Consider a connected component of ∂D \RP 1 as in the statement, doing as many blowing-

downs as necessary, we may assume that for each connected component C of ∂D \ RP 1, we have

that |∂C| = 2. Note that ∂C ⊂ RP 1. Now, by the cycle rule, ∂D contains at least two special

points. If two such special points are real, then we are done. Otherwise, there exists a connected

component C of ∂D \RP 1 containing a special point of ϕ. Now from condition (iii) of (4.3.1), we

get that both points of ∂C are special.

Recall that we denote by HΓ the union of RP 1 and the intersection of Γ with one component

of CP 1 \RP 1.
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Definition 4.26. For any c ∈ UN1 denote by c̃ its neighbour (a non-special critical point outside

I0) and consider the two connected components of CP 1 \HΓ having the complex arc of HΓ joining

c to c̃ contained in their boundaries. We will call both boundaries associated cycles to c.

Figure 4.15: The associated cycles to c.

Lemma 4.27. We have 2|UN1| ≤ |S0,1|+ |S1,0|. Moreover, denoting by k the number of elements

of S0,1∪S1,0 which are not contained in cycles associated to some points of UN1, we have 2|UN1| ≤
|S0,1|+ |S1,0| − k. Finally, 2|UN1| = |S0,1|+ |S1,0| − k only if any such cycle contains at most two

elements of S0,1 ∪ S1,0.

Proof. Performing flattening if necessary, we may assume without loss of generality that |S0,0| = 0.

We now show that each cycle ∂D associated to some c ∈ UN1 contains at least one element of

S0,1∪S1,0. Recall that by Lemma 4.25, ∂D contains at least two real special points. We distinguish

two cases.

• Assume that ∂D ∩ S1,1 6= ∅. Then by the cycle rule, we get that ∂D also contains at least

one letter r (which can be complex) and additional real special points. It is easy to see that none

of these additional points belongs to S1,1 ∪ S1,2 (see Figure 4.16). Therefore, ∂D contains at least

one element of S0,1 ∪ S1,0.

Figure 4.16: The indexes of the letters correspond to those of the sets that contain them.
The letter q0,1, which is on the left, belongs to one of the associated cycles.

• Assume now that ∂D contains an element of S1,2. Then one of the neighbours of this element,

which belongs to ∂D ∩ I0, is either an element of S0,1 or a non-special critical point in I0. In both

cases, reasoning as before, we still obtain that ∂D contains at least one element of S0,1 ∪ S1,0.
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Figure 4.17: The left q0,1 is a critical point in the cycle.

We now divide I0 with respect to the non-special critical points of ϕ. Let

c1 < c2 < · · · < cN

be the non-special critical points of ϕ in I0. Consider two consecutive non-special critical points

ci and ci+1.

Assume first that ci and ci+1 belong to UN1. We show that ]ci, ci+1[∪]c̃i+1, c̃i[, where c̃i (resp.

c̃i+1) is the neighbor of ci (resp. ci+1), contains at least two elements of S0,1 ∪ S1,0. Note that c̃i
and c̃i+1 are non-special critical points outside I0.

It is easy to see that ]c̃i+1, c̃i[∩(S1,1 ∪ S1,2) = ∅. Indeed,]ci, ci+1[ does not contain non-special

critical points. Therefore the only special points that can be contained in ]ci, ci+1[∪]c̃i+1, c̃i[ are

elements of S0,1 ∪ S1,0, where by Lemma 4.25, there are at least two of them.

Assume now that only one point, say ci, among ci and ci+1 belongs to UN1. Then the beginning

of the proof shows that the cycle associated to ci which intersects [ci, ci+1] contains at least one

element of S0,1 ∪ S1,0.

Using again the begining of the proof, we get that the cycle associated to c1 (resp. cN )

intersecting [0, c1] (resp. [cN , 1]), contains at least one element of S0,1 ∪ S1,0.

Summing all these inequalities (there is no over-counting), we get 2|UN1| ≤ |S0,1| + |S1,0|.
Furthermore, note that while making this sum, we only consider the points in S0,1 ∪ S1,0 that are

contained in the cycles associated to points c ∈ UN1. Therefore, other points in S0,1 ∪ S1,0 do not

contribute to the sum. Denoting their number by k, we get 2|UN1| ≤ |S0,1| + |S1,0| − k. Finally,

it is clear from the proof that if 2|UN1| = |S0,1|+ |S1,0| − k, then any such cycle contains at most

two elements of S0,1 ∪ S1,0.

4.3.3 End of the proof of Theorem 4.2

By Lemma 4.10, Remark 4.22, Proposition 4.23 and Lemma 4.27, we have respectively

[+ ≤
|S0|

2
+ 1, |US1,1| ≤ |S1,1|, |US1,2| ≤

|S0,2|
2

+ |S1,2|, |UN0| ≤
|S0,0|

2
(4.3.2)

and |UN1| ≤
|S0,1|+ |S1,0|

2
.

Moreover, we have N ≤ [+ + |U | by Lemma 4.18. Denote by Sc the set of all complex special

points of ϕ.

Note that a root (letter p) or a pole (letter q) of ϕ can have the value at ∞. Therefore,

|S0|+ |S1| ≤ degP + degQ+ 3− |Sc|.
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Thus, since |U | = |UN0| + |UN1| + |US1,1| + |US1,2|, |S0| = |S0,0| + |S0,1| + |S0,2| and |S1| =

|S1,0|+ |S1,1|+ |S1,2|, we get

N ≤ |S0|+ |S1|+ 1− |S1,0|
2
− |Sc| ≤ degP + degQ+ 4− |S1,0|

2
− |Sc|. (4.3.3)

If |S1,0| > 2 or |Sc| > 1, then by (4.3.3) we have N ≤ degP + degQ+ 2 and we are done. Note

that |Sc| is even since Sc is the set of complex points together with their conjugates. Therefore,

let us assume that |S1,0| ≤ 2 and |Sc| = 0. The last equality means that all special points are real

and simple.

• Assume that |S1,0| = 0. This means that all special points outside I0 (including 0 and 1)

are critical and are neighbours to non-special critical points in I0. Consider the open interval J0

(resp. J1) with endpoints the special point 0 (resp. 1) and a neighbor c0 (resp. c1) in I0 (see

Figure 4.18). As a consequence of Lemma 4.20, there exists an odd number of special points in J0

(resp. J1). Note that these special points are elements of S0,1, and they cannot be contained in

any cycle associated to some c ∈ UN1. Thus, by Lemma 4.27, we have 2|UN1| ≤ |S0,1|+ |S1,0| − 2,

and therefore we get N ≤ degP + degQ+ 3.

Figure 4.18: Each interval J0 and J1 contains an odd number of special points.

We now assume that N = degP + degQ+ 3 and prove that this gives a contradiction. Then

2|UN1| ≤ |S0,1|+ |S1,0| − 2 and all inequalities in (4.3.2) and (4.3.3) are equalities. In particular,

|S0| is an even number. Then by Remark 4.11 and the fact that there is an odd number of special

points in J0 (resp. J1), we get that c0 (resp. c1) is not a positive useful critical point.

This implies that 0 and 1 do not belong to S1,1 (and thus belong to S1,2). Indeed, suppose

on the contrary that one of 0 or 1, say 0, belongs to S1,1. Since c0 does not belong to US1,1, this

implies that |US1,1| < |S1,1|, a contradiction.

Now, from 0, 1 ∈ S1,2 it follows that c0, c1 ∈ US1,2. Denote by c̃0 ∈ I0 the closest non-special

critical point to 1 such that c̃0 is a neighbor to 0, and by K the closed interval with endpoints c0
and c̃0. Recall that

|US1,2| =
|S0,2|

2
+ |S1,2|, (4.3.4)

thus by Lemma 4.19, the number of elements in K ∩US1,2 is equal to one plus half the number

of elements in K ∩ S0,2. As c0 is not a positive useful non-special critical point, if c̃0 is positive

(resp. negative), then |K∩S0,2| is an odd (resp. even) number, and in both cases we get |K∩US1,2|
is less than one plus half the number of elements in K ∩ S0,2. This contradicts (4.3.4).
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• Assume that |S1,0| = 1. This means that there exists only one special point outside I0 that

is not a neighbor to a non-special critical point in I0. We argue now as in the case |S1,0| = 0. We

have that at least one special point in {0, 1}, say 0, is a neighbor to a non-special critical point c0
in I0. Then, the interval J0 =]0, c0[ contains at least one element of S0,1 that is not contained in a

cycle associated to some point c ∈ UN1. Thus by Lemma 4.27, we get 2|UN1| ≤ |S0,1|+ |S1,0| − 1,

and therefore N ≤ degP + degQ+ 3.

Assume that neither 0 nor 1 belongs to S1,0. Then, as discussed in the previous case, since

the points 0 and 1 are neighbours to non-special critical points in I0, we get that at least two

elements of S0,1 (one in J0, another one in J1, see Fig. 4.18) are not contained in a cycle associated

to some c ∈ UN1. Therefore by Lemma 4.27, we get 2|UN1| ≤ |S0,1| + |S1,0| − 2, which yields

N < degP + degQ+ 3 and we are done.

Assume now that either 0 or 1 belongs to S1,0. We assume furthermore that N = degP +

degQ+ 3 and prove that this gives a contradiction. Using |S1,0| = 1, 2|UN1| ≤ |S0,1|+ |S1,0| − 1,

N = degP + degQ+ 3 and (4.3.3), we get 2|UN1| = |S0,1|+ |S1,0| − 1 and |S0| is even. Consider

without loss of generality that 0 ∈ S1,0. We have 0 ∈ S1,0 ∩ ∂D0, where ∂D0 is a cycle associated

to some c0 ∈ UN1. Indeed, suppose on the contrary that 0 is not contained in a cycle associated to

some point c ∈ UN1. We already saw that there exists an element of S0,1 which is not contained

in a cycle associated to some c ∈ UN1. Together with 0 this would give at least two elements

of S0,1 ∪ S1,0 that are not contained in such a cycle, and thus 2|UN1| = |S0,1| + |S1,0| − 2 by

Lemma 4.27. This contradicts 2|UN1| = |S0,1| + |S1,0| − 1. Therefore 0 ∈ S1,0 ∩ ∂D0 where ∂D0

is a cycle associated to some c0 ∈ UN1. By the cycle rule and Lemma 4.25, ∂D0 contains at least

one real special point other than 0. As |S1,0| = 1 (and 0 ∈ S1,0) these special points can only be

elements of S0,1. There exists only one special point other than 0 in the interval ]0, c0[. Indeed,

otherwise ∂D0 would contain 3 elements of S0,1 ∪ S1,0 which implies 2|UN1| < |S0,1| + |S1,0| − 1

(by Lemma 4.27), and thus N < degP + degQ+ 3. Now using Remark 4.11, we get that c0 is not

a positive useful critical point, but this contradicts the fact that c0 ∈ UN1.

• Assume that |S1,0| = 2, then we have N ≤ degP + degQ + 3. We assume that N =

degP + degQ+ 3 and prove that this gives a contradiction. The latter assumption (as discussed

in the case |S1,0| = 0) means that |S0| is even and 2|UN1| = |S0,1| + |S1,0| since the inequality

in (4.3.3) becomes an equality.

We now show that 0 and 1 are elements of S1,0. Assume the contrary, say 0 /∈ S1,0. Then as

discussed before (case |S1,0| = 0), Lemma 4.20 implies that there exists at least one element of

S0,1 that is not contained in a cycle associated to some c ∈ UN1. Therefore by Lemma 4.27, we

get 2|UN1| = |S0,1|+ |S1,0| − 1, a contradiction.

Therefore, the point 0 (resp. 1) belongs to a cycle associated to an element c0 (resp. c1) in

UN1. Lemma 4.27 shows that both cycles contain at most one element of S0,1 each, since otherwise

2|UN1| < |S0,1| + |S1,0|. However, as discussed before (using Remark 4.11), this implies that c0
and c1 are not positive useful critical points, a contradiction.

4.4 The case of two trinomials: proof of Theorem 4.3

It is shown in [LRW03] that the maximal number of positive solutions of a system of two trinomial

equations in two variables is five. In this section, we prove Theorem 4.3. We recall the proof of

Theorem 4.1 in this special case in order to describe what happens in terms of the dessin d’enfant

Γ when the maximal number five of positive solutions is reached. Consider a system
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c0 · uw0 + c1 · uw1 + c2 · uw2 = c3 · uw3 + c4 · uw4 + c5 · uw5 = 0 (4.4.1)

where all ci ∈ R∗ , u = (u1, u2) ∈ R2 and all wi ∈ Z2.

Lemma 4.28. If a facet e1 of the Newton triangle of the first equation and a facet e2 of the

Newton triangle of the second equation are parallel, then (4.4.1) has strictly less than five positive

solutions.

Proof. Assume that the Newton triangles of (4.4.1) satisfies the conditions of the lemma. Suppose

without loss of generality that the parallel facets e1 and e2 are the convex hulls of the supports

of the truncated binomials c0u
w0 + c1u

w1 and c3u
w5 + c4u

w4 . We may assume without loss of

generality that w0 = w5 = 0 and c0 = c5 = 1. Performing a monomial change of coordinates as in

the beginning of Section 4.2 if necessary, we may also assume that |c1| = |c2| = 1. The system

y = ε0 + ε1x,

1 + c3x
m3 + c4x

m4yn4 = 0,
(4.4.2)

with ε0, ε1 ∈ {−1,+1} and all m3,m4, n4 ∈ Q, has the same number of non-degenerate positive

solutions as (4.4.1). Indeed, the system (6.1.1) is obtained from (4.4.1) by making the monomial

change of coordinates (u1, u2) 7→ (x, y) defined by x = uw1 and y = uw2 which preserves the

number of positive solutions.

Therefore, the number of positive solutions of (6.1.1) is equal to the number of positive solutions

in Iε0,ε1 of f(x) = 0, where

f(x) = 1 + a3x
m3 + a4x

m4(ε1x+ ε0)n4

and Iε0,ε1 = {x ∈ R>0 | ε0 + ε1x > 0}. Since f has no poles in Iε0,ε1 , by Rolle’s Theorem, if

f(x) = 0 has five positive solutions in Iε0,ε1 then f ′(x) = 0 has four positive solutions in the same

interval. We prove Lemma 4.28 by showing that the number of positive roots of f ′ in Iε0,ε1 is less

or equal to 3. Making similar computations as above (at the beginning of this section), we obtain

f ′(x) = 0⇔ φ(x) = 1, where

φ(x) = xm4−m3(ε0 + ε1x)n4−1ρ(x)

and deg ρ = 1.

Note that the result becomes trivial if ε0 = ε2 = −1 since the first equation of (6.1.1) has no

positive solutions. Therefore, we consider three cases.

• First case: ε0 = 1 and ε1 = −1. Then Iε0,ε1 =]0, 1[, and the result comes directly from

Theorem (4.2) applied to φ.

• Second case: ε0 = −1 and ε1 = 1. Then Iε0,ε1 =]1,+∞[, and we consider the function

φ̃(x) = φ(1/x). Then ]{x ∈ ]1,+∞[ | φ(x) = 1} = ]{x ∈ ]0, 1[ | φ̃(x) = 1}, and the result

follows by applying Theorem (4.2) to

φ̃(x) = xm3−m4−n4(1− x)n4−1ρ̃(x),

with deg ρ̃ = 1.
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• Third case: ε0 = 1 and ε1 = 1. Then, φ has at most one pole in R>0 (a root of ρ). Similarly

to the proof of Lemma 4.4, we have

φ′(x) = xm4−m3−1(1 + x)n4−2h2(x),

where h2 is a polynomial of degree at most 2, thus φ′ has at most two roots. Therefore, the

result comes as a consequence of Rolle’s Theorem and by noting that the changes of sign (if

they exist) of φ in R>0 occur only at a root of ρ.

Remark 4.29. Note that as a consequence of Lemma 4.28, we retrieve the fact that if a sys-

tem (4.4.1) has five positive solutions, then the Minkowski sum of the Newton triangles associated

to each equation of (4.4.1) is an hexagon [LRW03].

In what follows, we assume that the support of each equation of (4.4.1) is non-degenerate i.e.

it is not contained in a line. Furthermore, we suppose that the system has positive solutions, thus

the coefficients of each equation of (4.4.1) have different signs. Therefore without loss of generality,

let c0 = −1, c1 · c2 < 0, c5 = −1, c3 > 0 and c4 > 0.

Since we are looking for solutions of (4.4.1) with non-zero coordinates, one can assume that

w0 = w5 = (0, 0). Let k3 be the greatest common divisor of the coordinates of w3. Setting

z = c3 · u
w3
k3 and choosing any basis of Z2 with first vector 1

k3
· w3, we get a monomial change of

coordinates (u1, u2) 7→ (z, w) of (C∗)2 such that c3 ·uw3 = zk3 and c4 ·uw4 = zk4wl4 . Replacing w by

w−1 if necessary, we assume that l4 > 0. Indeed, l4 6= 0, since by assumption, the support of each

equation of (4.4.1) is non-degenerate. With respect to these new coordinates, the system (4.4.1)

becomes the polynomial system

−1 + a1 · zk1wl1 + a2 · zk2wl2 = −1 + zk3 + zk4wl4 = 0 (4.4.3)

where ai has the same sign of ci for i = 1, 2. Note that since c3 and c4 are positive, (4.4.1)

and (4.4.3) have the same number of positive solutions.

We now look for the positive solutions of (4.4.3). The second equation of this system may be

written as w = xα(1 − x)β , where x := zk3 , α = −k4/(k3l4) and β = 1/l4. It is clear that since

z, w > 0, we have x ∈ I0 =]0, 1[. Plugging z and w in the first equation of 4.4.3, we get

−1 + a1 · xα1(1− x)β1 + a2 · xα2(1− x)β2 = 0, (4.4.4)

where αi :=
kil4 − k4li

k3l4
and βi :=

li
l4

for i = 1, 2. The number of positive solutions of (4.4.1)

is equal to the number of solutions of (4.4.4) in I0. Therefore we want to bound the number of

solutions in I0 of f(x) = 1 where

f(x) := a1 · xα1(1− x)β1 + a2 · xα2(1− x)β2 . (4.4.5)

Note that the function f has no poles in I0, thus by Rolle’s theorem we have ]{x ∈ I0 |f(x) =

1} ≤ ]{x ∈ I0 |f ′(x) = 0}+ 1. Since

f ′(x) = a1x
α1−1(1− x)β1−1ρ1(x) + a2x

α2−1(1− x)β2−1ρ2(x),
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where ρi(x) = αi − (αi + βi)x for i = 1, 2, we get f ′(x) = 0⇔ φ(x) = 1, where

φ(x) = −a1

a2
· x

α1−α2(1− x)β1−β2ρ1(x)

ρ2(x)
.

Thus applying Theorem 4.2 (with deg ρ1 = deg ρ2 = 1) we get ]{x ∈ I0 |f ′(x) = 0} ≤ 4, and

therefore S(3, 3) ≤ 5.

We now start the proof of Theorem 4.3. The property that ∆1 and ∆2 do not alternate is

preserved under monomial change of coordinates. Thus it suffices to prove Theorem 4.3 for the

system (4.4.3). As we just saw before, if (4.4.3) has five positive solutions, then φ(x) = 1 has

four solutions in I0. We look for necessary conditions on the dessin d’enfant Γ = (φm)−1(RP 1)

(where m is a natural integer such that ϕ = φm is a rational function as in the previous section).

More precisely, we want to know the positions of the root p̃ = α1

α1+β1
and the pole q̃ = α2

α2+β2
of ϕ

relatively to 0 and 1 in RP 1.

The normal fan of a n-dimensional convex polytope in Rn is the complete fan with one-

dimensional cones directed by the outward normal vectors of the (n − 1)-faces of this polytope.

Denote by ∆1 and ∆2 the Newton polytopes of the first and the second equation of (4.4.3) respec-

tively.

Definition 4.30. Let ∆1 and ∆2 be two 2-dimensional polygons in R2 with the same number of

edges. In other words, their respective normal fans F1 and F2 have the same numbers of 1-cones

and 2-cones respectively. We say that ∆1 and ∆2 alternate if every 2-cone of F2 contains properly

a 1-cone of F1 (properly means that the origin is the only common face), see Figure 4.19.

Figure 4.19: Two polytopes that alternate.

Another example that illustrates Theorem 4.3 (where ∆1 and ∆2 do not alternate) is the

system
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x5 − (49/95)x3y + y6 = y5 − (49/95)xy3 + x6 = 0, (4.4.6)

taken from [Roj] that has five positive solutions.

Figure 4.20: The Newton polytopes, their Minkowski sum and the associated normal fans
of (4.4.6).

Recall that k3 > 0 and l4 > 0. Let F1 (resp. F2) denote the normal fan of ∆1 (resp. ∆2). The

polygon ∆2 together with F2 are represented in Figure 4.21. The outward normal vectors of the

three edges of ∆2 are the vectors F0,3 = (0,−k3), F0,4 = (−l4, k4) and F3,4 = (l4, k3 − k4). The

one-dimensional cones of F1 are generated by vectors F0,1 = ε01(−l1, k1), F0,2 = ε02(−l2, k2) and

F1,2 = ε12(l1 − l2, k2 − k1), where εij ∈ {±1}.

Figure 4.21: The triangle∆2 and its normal fan F2.

Recall that α1 and α2 (resp. β1 and β2) are the powers of x (resp. 1−x) appearing in (4.4.4).

Lemma 4.31. If (4.4.3) has five positive solutions, then we have the following conditions

α1 − α2 6= β2 − β1, α1 6= α2, β1 6= β2, αi + βi 6= 0, αi 6= 0 and βi 6= 0 for i = 1, 2.

Proof. Consider any two normal vectors of ∆1 and ∆2 each, if they are collinear, then by Lemma 4.28,

the system (4.4.3) has strictly less than five positive solutions. We now proceed by contradiction.
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Assume that α1 − α2 = β2 − β1. Then we have

k1l4 − k4l1 − k2l4 + k4l2
k3l4

=
k3l2 − k3l1

k3l4
⇒ (l1 − l2)(k3 − k4) + l4(k1 − k2) = 0,

thus the wedge product F3,4∧F1,2 vanishes, a contradiction. Similarly, if α1 = α2 (resp. β1 = β2),

then we get
k1l4 − k4l1

k3l4
=
k2l4 − k4l2

k3l4
⇒ k4(l2 − l1)− l4(k2 − k1) = 0

(resp. k3(l1 − l2) = 0) and thus F0,4 ∧ F1,2 = 0 (resp. F0,3 ∧ F1,2 = 0), a contradiction. Let

i ∈ {1, 2}. Using the same arguments, if αi = 0, βi = 0 or αi = −βi, we get

kil4 − k4li = 0 ⇒ F0,4 ∧ F0,i = 0,

li = 0 ⇒ F0,3 ∧ F0,i = 0 or

kil4 − k4li
k3l4

=
k3li
k3l4

⇒ kil4 − li(k4 − k3) = 0⇒ F3,4 ∧ F0,i = 0

respectively, and in each of these cases this is a contradiction.

Corollary 4.32. If (4.4.3) has five positive solutions, then 0 (resp. 1, ∞) is a special point of ϕ

and p̃ (resp. q̃) does not belong to {0, 1,∞}.

Without loss of generality, we assume that α1 > α2 considering ϕ−1 instead of ϕ if necessary.

The following key result will play an important role in relating the arrangment of the special points

of ϕ and the faces of ∆1 + ∆2.

Proposition 4.33. Assume that ]{x ∈ I0| φ(x) = 1} = 4. If β1 > β2, then

α1

α1 + β1
<

α2

α2 + β2
< 0 or 1 <

α2

α2 + β2
<

α1

α1 + β1
.

And if β1 < β2, then

0 <
α2

α2 + β2
< 1 <

α1

α1 + β1
or

α2

α2 + β2
< 0 <

α1

α1 + β1
< 1.

Before giving the proof of Proposition 4.33, we need an intermediate result. Assume that

φ(x) = 1 has four solutions in I0 and consider the open interval Ĩ with endpoints p̃ and q̃. Recall

that we have a1 · a2 < 0. Therefore the sign of φ(x) in I0 is the same as that of

ρ1(x)

ρ2(x)
.

Thus the solutions of φ(x) = 1 are either all inside or outside Ĩ. Indeed, the sign of φ changes when

passing through p̃ (resp. q̃). Note that p̃ 6= q̃, because otherwise we get φ(x) = kxα1−α2(1−x)β1−β2

for some k ∈ R, which would imply that the equation ϕ = φm(x) = 1 has at most two solutions in

I0.

Lemma 4.34. We have Ĩ * I0 and I0 * Ĩ.

Proof. We argue by contradiction. First, assume that Ĩ ⊂ I0. Denote by J0 (resp. J1) the left

(resp. right) connected component of I0 \ Ĩ. Three cases exist.
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1. Assume that all four solutions (letter r) of ϕ(x) = 1 are contained in Ĩ. Then by Rolle’s

theorem, there exists at least three non-special critical points of ϕ in Ĩ. Recall that ϕ has

at most three non-special critical points, this means that all non-special critical points of

ϕ are contained in Ĩ. Furthermore, we have α1 > α2, so 0 is a root (letter p) of ϕ, and

thus q̃ < p̃, which implies that 1 is a pole (letter q) of ϕ. In this case, if ∞ is a root (resp.

pole ) of ϕ (recall that by Corollary 4.32, ∞ is either a root or a pole of ϕ), then there

exists a non-special critical point that is smaller than 0 (resp. bigger than 1). This gives a

contradiction.

2. Assume that the four solutions of ϕ(x) = 1 in I0 belong to J0 (the case where the roots

are in J1 is symmetric). Then by Rolle’s theorem, all non-special critical points of ϕ (recall

that it has at most three non-special critical points) are contained in J0. As a consequence

of Lemma 4.20, we get that none of these non-special critical points can be neighbours to

the special point 0 or 1. Moreover, by Lemma 4.16, these non-special critical points cannot

be neighbours to p̃ or q̃. The cycle rule shows that the non-special critical points in J0

cannot be neighbours to each other. We conclude that the only possible neighbor of each

non-special critical point in J0 is the point ∞. This contradicts the cycle rule.

3. Assume that at least one solution of ϕ(x) = φm(x) = 1 is contained in J0 and at least

another one is contained in J1. Thus, in particular all four solutions of φ(x) = 1 belong to

J0∪J1 (since they are all either inside or outside Ĩ). Then by Rolle’s theorem, there exist at

least two non-special critical points of ϕ contained in J0 ∪ J1. Therefore, the interval Ĩ does

not contain non-special critical points since Ĩ can only contain an even number of non-special

critical points. As a consequence of Lemma 4.20, these non-special critical points cannot be

neighbours to special points 0 or 1, and by Lemma 4.16, they cannot be neighbours to p̃ or

q̃.

We now prove that non-special critical points in J0∪J1 cannot be neighbours. Indeed, assume

on the contrary, that there exists a non-special critical point c ∈ I0 that is a neighbor to a

non-special critical point c̃ ∈ I0. Then both c and c̃ cannot be contained in the same interval

J0 or J1, otherwise this will contradict the cycle rule. Assume without loss of generality

that c ∈ J0 and c̃ ∈ J1. Recall that ϕ has at most three non-special critical points in I0. By

Proposition 4.14, among c and c̃, one of them, say c, is not useful. We show that c is the

only non-special critical point of ϕ contained in J0. Assume that there exists a non-special

critical point in J0 other than c. Then, as c is not useful, J0 will contain at most one letter

r. Moreover, c̃ is the only non-special critical point in J1, and thus J1 contains at most

two solutions of φ(x) = 1. Therefore the total number of solutions of φ(x) = 1 in J0 ∪ J1,

and thus in I0, can be at most three, a contradiction. We have proved that c is the only

non-special critical point of ϕ contained in J0. Note that as J0 contains only one non-special

critical point, which is not useful, we have that J0 does not contain solutions of φ(x) = 1.

Finally, since J1 has at most two non-special critical points, it has at most three solutions of

φ(x) = 1. As before, we get that φ(x) = 1 has at most three solutions in I0, a contradiction.

We have finished to prove that non-special critical points in J0 ∪ J1 cannot be neighbours.

We now prove that non-special critical points in J0∪J1 cannot be neighbours to non-special

critical points outside I0. Arguing by contradiction, assume that there exists a non-special

critical point c0 ∈ J0 ∪ J1 that is a neighbor to a non-special critical point c1 /∈ I0. Then,

as p̃ and q̃ are inside I0, the number of special critical points in the open interval K, with

endpoints c0 and c1, contains an odd number of special points among 0, p̃, q̃ and 1. Note
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that there do not exist non-special critical points in K \ I0. Indeed, otherwise c0 would be

the only non-special critical point of ϕ in I0, which would contradict the fact that φ(x) = 1

has four solutions in I0. Also there is no non-special critical points in K ∩ I0. Indeed,

otherwise there would be only one such point in K ∩ I0, which obviously is not a neighbor

of c0 or c1. Moreover, this non-special critical point in K ∩ I0 is not a neighbor to p̃ or q̃ by

Lemma 4.16, and not a neighbor to 0 or 1 by Lemma 4.20. This shows that there cannot

be a non-special critical point K ∩ I0. The odd number of special points in K cannot be

equal to one since this would contradict the cycle rule. Thus this number is equal to three.

Consider the closed disc D in CP 1 with boundary given by the union of K and a complex

arc of Γ joining c0 to c1. Note that K contains either two roots and one pole of ϕ, or two

poles and one root of ϕ. Moreover, K does not contain non-special critical points of ϕ. It

follows that the cycle rule is violated inside D.

To sum up, there are at least two non-special critical points in J0∪J1. We showed that they

are not neighbours to 0, 1, p̃, q̃ or other non-special critical points. Moreover, it is obvious

that they cannot be all neighbours to ∞ by the cycle rule, thus we get a contradiction.

We have finished to prove that Ĩ * I0, and now we prove that I0 * Ĩ. Assume on the contrary

that I0 ⊂ Ĩ. We have 4 solutions of φ(x) = 1 in I0, so by Rolle’s theorem, all three non-special

critical points of φ are in I0. This implies that q̃ < 0 and p̃ > 1. Indeed, 0 is a root of φ (since

α1 > α2), and there is no non-special critical points in Ĩ \ I0. Recall that by Corollary 4.32, the

value ∞ is either a root or a pole of ϕ. If ∞ is a root (resp. pole) of ϕ, then by Rolle’s theorem,

there should be a non-special critical point between p̃ (or q̃) and ∞, a contradiction.

4.4.1 Proof of Proposition 4.33

By Lemma 4.34, we either have that I0 ∩ Ĩ = ∅ or that only one endpoint of Ĩ is contained in I0.

Assume first that only one endpoint ẽ of Ĩ belongs to I0. We already saw that the four solutions

of φ(x) = 1 in I0 are all either inside or outside Ĩ. Therefore these four solutions, and thus all

three non-special critical points of ϕ, are all either bigger or smaller than ẽ. Recall that 0 is a root

of ϕ.

- Assume that all four solutions of φ(x) = 1 are bigger than ẽ. Then, as shown at the top of

Figure 4.22, ẽ is equal to q̃, and thus p̃ belongs to ]1,∞[, since otherwise this would give a

non-special critical point smaller than ẽ. It follows that 1 is a pole of ϕ, which means that

β1 < β2. Moreover, we get that 0 < α2

α2+β2
< 1 < α1

α1+β1
.

- Assume now that all four solutions of φ(x) = 1 are smaller than ẽ. Then, as shown at the

bottom of Figure 4.22, ẽ is equal to p̃, and thus q̃ belongs to ]∞, 0[, since otherwise this

would give a non-special critical point bigger than ẽ. It follows again that 1 is a pole of ϕ,

which means that β1 < β2. Moreover, we get that α2

α2+β2
< 0 < α1

α1+β1
< 1.

Assume now that Ĩ ∩ I0 = ∅. Recall that by Rolle’s theorem, all three non-special critical

points of ϕ are contained in I0.

- Assume that both p̃ and q̃ are negative. Since 0 is a root of ϕ, we have p̃ < q̃ < 0 i.e.
α1

α1+β1
< α2

α2+β2
< 0. Therefore 1 is a root of ϕ, which means β1 > β2 (See top of

Figure 4.23).
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- Assume that both p̃ and q̃ are bigger than 1. Since 0 is a root of ϕ, we have that ∞ is a

pole, and thus 1 < q̃ < p̃, i.e. 1 < α2

α2+β2
< α1

α1+β1
. Therefore 1 is a root of ϕ, which means

that β1 > β2 (See bottom of Figure 4.23).

Figure 4.22: At the top: 0 < q̃ < 1 < p̃. At the bottom: q̃ < 0 < p̃ < 1

Figure 4.23: At the top: p̃ < q̃ < 0. At the bottom: 1 < q̃ < p̃

4.4.2 End of proof of Theorem 4.3

Assume that φ(x) = 1 has 4 solutions in I0. We prove that ∆1 and ∆2 do not alternate by looking

at each of the four cases of conditions presented in Proposition 4.33. We prove that in each case,

there exists a 2-cone Ai of the fan F2, that does not contain any 1-cone of F1. In order to do that,

we look at the signs of the wedge products of the generators of the 1-cones of F1 and F2.

Recall that

p̃ =
α1

α1 + β1
, q̃ =

α2

α2 + β2
, α1 > α2, and k3, l4 > 0,
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curves

and for i = 1, 2, we have

αi =
kil4 − k4li

k3l4
and βi :=

li
l4
. (4.4.7)

• Assume that β1 < β2 and 0 < q̃ < 1 < p̃. From the proof of Proposition 4.33, we know that

the roots of φ(x) = 1 are inside ]q̃, p̃[, thus (α1 + β1)(α2 + β2) < 0 since ρi(x) = αi− (αi + βi)x for

i = 1, 2. The fact that both p̃ and q̃ are positive implies that α1(α1 +β1) > 0 and α2(α2 +β2) > 0.

Consequently, we have α1α2 < 0. Furthermore, as α1 > α2, we have α2 < 0 < α1. From α2 < 0

and α2

α2+β2
> 0, we get α2 + β2 < 0 and thus α2 + β2 < 0 < α1 + β1. Furthermore, as α2 + β2 < 0

(resp. α1 + β1 > 0) and α2

α2+β2
< 1 (resp. 1 < α1

α1+β1
), we get β2 < 0 (resp. β1 < 0). We have

α1

α2
< 0 < β1

β2
, α2 < 0 and β2 < 0, therefore α1β2 < α2β1.

The last inequality gives k1l2 < k2l1, and thus F0,1∧F0,2 < 0. Moreover, from (4.4.7), we have

l1 < 0, l2 < 0 and l1−l2 < 0. We deduce that the first coordinate of F0,1 (resp. F0,2, F1,2) is positive

(resp. negative, negative). Therefore F0,1 = (−l1, k1), F0,2 = (l2,−k2) and F1,2 = (l1− l2, k2−k1).

Recall that F0,3 = (0,−k3), F0,4 = (−l4, k4) and F3,4 = (l4, k3 − k4). We have the following.

- F0,3 ∧ F1,2 = k3l4(β1 − β2) = k3(l1 − l2) < 0, thus F1,2 /∈ A3.

- F3,4 ∧ F0,1 = k3l4(α1 + β1) = k1l4 − (k4 − k3)l1 > 0, thus F0,1 /∈ A3.

- F0,2 ∧ F3,4 = k3l4(α2 + β2) = k2l4 − (k4 − k3)l2 < 0, thus F0,2 /∈ A3.

We conclude that the 2-cone A3 does not contain any 1-cone of F1, and therefore ∆1 and ∆2

do not alternate.

• Assume that β1 < β2 and q̃ < 0 < p̃ < 1. From the proof of Proposition 4.33, we know that

the solutions of φ(x) = 1 are inside ]q̃, p̃[, thus (α1 +β1)(α2 +β2) < 0 since ρi(x) = αi− (αi +βi)x

for i = 1, 2. The fact that p̃ > 0 and q̃ < 0 implies that α1(α1 + β1) > 0 and α2(α2 + β2) < 0.

Consequently, we have α1α2 > 0. Moreover, we have α2 < 0. Indeed, assume on the contrary,

that we have α2 > 0. Then α1 > 0, α2 + β2 < 0 and α1 + β1 > 0. Recall that α2

α2+β2
< 1 (resp.

α1

α1+β1
< 1), thus β2 < 0 (resp. β1 > 0), which contradicts β1 < β2. Therefore we have α1 < 0,

α2 + β2 > 0, α1 + β1 < 0 and thus α1 + β1 < α2 + β2. From α2 + β2 > 0 (resp. α1 + β1 < 0) and
α2

α2+β2
< 1 (resp. α1

α1+β1
< 1), we get β2 > 0 (resp. β1 < 0). We have β1

β2
< 0 < α1

α2
, α2 < 0 and

β2 > 0, thus α1β2 < α2β1.

The last inequality gives k1l2 < k2l1, and thus F0,1 ∧ F0,2 < 0. Moreover, from (4.4.7), we

have l1 < 0 and 0 < l2. We deduce that the first coordinate of F0,1 (resp. F0,2, F1,2) is positive

(resp. positive, negative), therefore F0,1 = (−l1, k1), F0,2 = (l2,−k2) and F1,2 = (l1 − l2, k2 − k1).

Therefore we have the following.

- F0,4 ∧ F1,2 = k3l4(α1 − α2) = k4(l2 − l1)− l4(k2 − k1) > 0, thus F1,2 /∈ A4.

- F3,4 ∧ F0,1 = k3l4(α1 + β1) = k1l4 − (k4 − k3)l1 < 0, thus F0,1 /∈ A4.

- F0,2 ∧ F3,4 = k3l4(α2 + β2) = k2l4 − (k4 − k3)l2 > 0, thus F0,2 /∈ A4.

We conclude that the 2-cone A4 does not contain any 1-cone of F1, therefore ∆1 and ∆2 do

not alternate.
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• Assume that β1 > β2 and p̃ < q̃ < 0. From the proof of Proposition 4.33, we know that the

solutions of φ(x) = 1 in I0 are outside ]p̃, q̃[, thus (α1+β1)(α2+β2) > 0 since ρi(x) = αi−(αi+βi)x

for i = 1, 2. We have that both of q̃ and p̃ are negative, thus α2(α2 +β2) < 0 and α1(α1 +β1) < 0,

and consequently we get α1α2 > 0. Recall that α1 > α2 and β1 > β2, therefore α1 +β1 > α2 +β2.

Moreover, we have 1
α1+β1

< 1
α2+β2

since (α1 + β1)(α2 + β2) > 0. We have β1 < 0. Indeed, assume

on the contrary that β1 > 0. Then α1(α1+β1) < 0 gives α1 < 0, and thus α2 < 0. Therefore we get

α2 < α1 < 0 and consequently 0 < 1
α1+β1

< 1
α2+β2

gives α2

α2+β2
< α1

α1+β1
, which is a contradiction

with p̃ < q̃. Then β2 < β1 < 0, and α1(α1 + β1) < 0 (resp. α2(α2 + β2) < 0) gives α1 > 0 (resp.

α2 > 0) and (α1 + β1) < 0 (resp. (α2 + β2) < 0). Having α2 < α1 and β2 < 0 (resp. α2 > 0 and

β2 < β1) gives α1β2 < α2β2 (resp. α2β2 < α2β1) and therefore α1β2 < α2β1.

The last inequality gives k1l2 < k2l1, and thus F0,1∧F0,2 < 0. Moreover, from (4.4.7), we have

l2 < l1 < 0. We deduce that the first coordinate of F0,1 (resp. F0,2, F1,2) is positive (resp. negative,

positive), therefore F0,1 = (−l1, k1), F0,2 = (l2,−k2) and F1,2 = (l1 − l2, k2 − k1). Therefore we

have the following.

- F0,4 ∧ F0,2 = k3l4α2 = l4k2 − k4l2 > 0, thus F0,2 /∈ A4.

- F3,4 ∧ F0,1 = k3l4(α1 + β1) = k1l4 − (k4 − k3)l1 < 0, thus F0,1 /∈ A4.

- F0,4 ∧ F1,2 = k3l4(α1 − α2) = k4(l2 − l1)− l4(k2 − k1) > 0, thus F1,2 /∈ A4.

We conclude that the 2-cone A4 does not contain any 1-cone of F1, therefore ∆1 and ∆2 do

not alternate.

• Assume that β1 > β2 and 1 < q̃ < p̃. From the proof of Proposition 4.33, we know that

the solutions of φ(x) = 1 in I0 are outside ]p̃, q̃[, thus we have (α1 + β1) · (α2 + β2) > 0 since

ρi(x) = αi − (αi + βi)x for i = 1, 2. Both of q̃ and p̃ are positive, thus we get α2(α2 + β2) > 0 and

α1(α1 + β1) > 0. Consequently, we get that α1α2 is positive. Recall that α1 > α2 and β1 > β2,

therefore α1 + β1 > α2 + β2, and thus 1
α1+β1

< 1
α2+β2

since (α1 + β1) · (α2 + β2) > 0. We have

β1 > 0. Indeed, assume on the contrary, that β1 < 0 (and thus β2 < 0 since β2 < β1). Then

1 < α1/(α1 + β1) (resp. 1 < α2/(α2 + β2)) gives α1 > 0 (resp. α2 > 0). Moreover, β2 < β1 < 0

(resp. 0 < α2

α2+β2
< α1

α1+β1
) yields α1β2 < α2β1 (resp. α2β1 < α1β2), and thus a contradiction.

Since 1 < α1

α1+β1
and β1 > 0, we get α1 < 0, and thus α1 + β1 < 0. Furthermore, this gives

α2 +β2 < 0 since (α1 +β1)(α2 +β2) > 0, and consequently α2(α2 +β2) > 0 yields α2 < 0. We have

β2 > 0 since 1 < α2

α2+β2
, and therefore we get α1β2 > α2β1 since 0 < β2 < β1 and α2 < α1 < 0.

The inequality α1β2 > α2β1 gives k1l2 > k2l1, and thus F0,1∧F0,2 > 0. Moreover, from (4.4.7),

we have 0 < l2 < l1. With these relations we deduce that the first component of F0,1 (resp.

F0,2, F1,2) is positive (resp. negative, negative), therefore F0,1 = (l1,−k1), F0,2 = (−l2, k2) and

F1,2 = (l2 − l1, k1 − k2). Therefore we have the following.

- F0,2 ∧ F0,3 = k3l4β2 = k3l2 > 0, thus F0,2 /∈ A3.

- F0,1 ∧ F3,4 = k3l4(α1 + β1) = k1l4 − (k4 − k3)l1 < 0, thus F0,1 /∈ A3.

- F3,4 ∧ F1,2 = k3l4(α1 + β1 − α2 − β2) = (k4 − k3)(l2 − l1)− l4(k2 − k1) > 0, thus F1,2 /∈ A3.

We conclude that the 2-cone A3 does not contain any 1-cone of F1, therefore ∆1 and ∆2 do

not alternate.



Chapter 5

Characterization of circuits
supporting polynomial systems
with the maximal number of
positive solutions

Recall that a circuit is a set of n + 2 points in Rn that are minimally affinely dependent. In this

chapter, we prove the following result.

Theorem 5.1. A circuit W in Rn supports a system with n+ 1 non-degenerate positive solutions

if and only if there exists a bijection

{1, . . . , n+ 2} −→ W
i 7−→ wi

such that every affine relation on W can be written as

s∑
i=1

αiwi =

n+2∑
s+1

αiwi,

where s = b(n+ 2)/2c and all αi, αi are positive numbers which satisfy

r∑
i=1

αi <

s+r∑
i=s+1

αi <

r+1∑
i=1

αi for r = 1, . . . , s− 1 if n is even

or
r∑
i=1

αi <

s+r+1∑
i=s+2

αi <

r+1∑
i=1

αi for r = 1, . . . , s− 1 if n is odd.

If Theorem 5.1 is true for any circuit W ⊂ Zn, then it is also true for any circuit W ⊂ Rn.

Indeed, assume that a system with support a circuit W = {w1, . . . , wn+2} ⊂ Rn has n + 1 non-

degenerate positive solutions. Then for i = 1, . . . , n+ 2, points w̃i ∈ Qn that are sufficiently close

to wi support a (generalized) polynomial system with the same coefficients and having at least
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n + 1 non-degenerate positive solutions, and thus exactly this number of non-degenerate positive

solutions since n + 1 is an upper bound. Now, multiplying all w̃i by some integer, one acquires

a system supported on a circuit in Zn with n + 1 non-degenerate positive solutions. Since the

inequalities appearing Theorem 5.1 are strict, if the first circuit W satisfies them, then they are

satisfied by the new circuit W̃ as well, and vice-versa.

Assume thatW = {w1, . . . , wn+2} is a set of n+2 points in Zn and consider any affine relation∑n+2
i=1 λiwi = 0 with integer coefficients. After a small perturbation, any system with n equations

in n variables z = (z1, . . . , zn) and supported on W can be reduced by Gaussian elimination to a

system

zwi = Pi(z
wn+1) for i = 1, . . . , n, (5.0.1)

having at least the same number of non-degenerate positive solutions, where P1, . . . , Pn+1 are real

polynomials of degree 1 in one variable (see Section 5.1). We define in Section 5.1 a real rational

function ϕ(y) =
∏n+1
i=1 P

λi
i . We apply Gale duality (c.f. [Bih15, BS07, BS08]) to obtain a corre-

spondence between non-degenerate solutions of (5.0.1) and those of ϕ(y) = 1. This correspondence

restricts to a bijection between non-degenerate positive solutions of the system and the solutions

contained in the (possibly empty) interval ∆+ := {y ∈ R| Pi(y) > 0 for i = 1, . . . , n + 1}. After

homogenization, we get a real rational map CP 1 → CP 1 that we denote again by ϕ. The real

dessin d’enfant Γ associated to ϕ : CP 1 → CP 1, is the inverse image of the real projective line

under ϕ. Given that ϕ(y) = 1 has n+ 1 solutions in ∆+, we deduce by analyzing Γ in Section 5.2

the inequalities of Theorem 5.1. Note that the solutions of ϕ(y) = 1 are the roots of

Gt(y) =
∏
λi>0

Pλii (y)−
∏
λi<0

P−λii (y)

in ∆+.

For the “if” direction of Theorem 5.1, we apply in Section 5.3, Viro patchworking to the

polynomial

Gt(y) =
∏
λi>0

Pλii,t (y)−
∏
λi<0

P−λii,t (y), (5.0.2)

where the Pi,t are Viro polynomials of degree 1.

5.1 Technical preamble

Given a system of n polynomials in n variables with total support a circuit W = {w1, . . . , wn+2},
perturbing slightly its coefficients if necessary, we may assume that the coefficients of zw1 , . . . , zwn

in the system form an invertible matrix (a small perturbation does not decrease the number of non-

degenerate positive solutions). Since we are only interested in non-degenerate positive solutions,

we may assume that wn+2 = 0 and we transform the original via Gaussian elimination into an

equivalent system such that the coefficients of zw1 , . . . , zwn form a diagonal matrix

zwi = Pi(z
wn+1) for i = 1, . . . , n, (5.1.1)

where Pi(z
wn+1) = ai + biz

wn+1 for i = 1, . . . , n. We start by giving a brief description about

Gale duality for the system (5.1.1) (c.f. [Bih15, Bih07, BS08]). We use the linear relations on W
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to obtain a special polynomial in one variable, called Gale polynomial. We have that any integer

linear relation among the exponent vectors of W

n+1∑
i=1

λiwi = 0 (5.1.2)

gives a monomial identity

(zw1)λ1 · · · (zwn)λn(zwn+1)λn+1 = 1.

If we substitute the polynomials Pi(z
wn+1) of (5.1.1) into this identity, we obtain a consequence of

the latter equation

(P1(zwn+1))λ1 · · · (Pn(zwn+1))λn(zwn+1)λn+1 = 1. (5.1.3)

Under the substitution y = zwn+1 , the polynomials Pi(z
wn+1) become linear functions Pi(y). Set

Pn+1(y) = y. Then (5.1.3) becomes

n+1∏
i=1

Pi(y)λi = 1, (5.1.4)

which constitutes a Gale transform associated to the system (5.1.1). Recall that

∆+ = {y | Pi(y) > 0 for i = 1, . . . , n+ 1}.

We can write equivalently (5.1.4) as G(y) = 0, where G is the Gale polynomial defined by

G(y) =
∏
λi>0

Pλii (y)−
∏
λi<0

P−λii (y). (5.1.5)

Proposition 5.2. [BS07] The association

φwn+1
: Rn+ 3 z 7−→ zwn+1 =: y ∈ R+

is a bijection between solutions z ∈ Rn+ of the diagonal system (5.1.1) and solutions y ∈ ∆+

of (5.1.4) which restricts to a bijection between their non-degenerate solutions.

5.2 Proof of the “only if” direction of Theorem 5.1

Set Pn+2(y) = 1 and λn+2 = −
∑n+1

i=1 λi. We see Pn+2 as a polynomial of degree 1 having a root

at ∞. In what follows, we study the solutions of ϕ(y) = 1 contained in ∆+ where

ϕ(y) =

n+2∏
i=1

Pλii (y). (5.2.1)

Recall from Chapter 4 that a point x ∈ R ∪ {∞} is a special point of ϕ if x is either a root

or a pole of ϕ. Conversely, a non-special critical point x ∈ R of ϕ is a root of ϕ′ such that x is

not a special point of ϕ. In what follows, we see ϕ (after homogenization) as a real rational map

CP 1 → CP 1.

Since the graph Γ = ϕ−1(RP 1) is invariant under complex conjugation, it is determined by

its intersection with one connected component H (for half) of CP 1 \ RP 1. In all the figures of
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this chapter, we will only show one half part H ∩ Γ together with RP 1 = ∂H represented as a

horizontal line. Moreover, for simplicity, we omit the arrows. See Chapter 2 for more details on

real dessins d’enfant.

Let a, b be two critical points of ϕ i.e. vertices of Γ. Recall from Chapter 4 that a and b are

neighbours if there is a branch of Γ \RP 1 joining them such that this branch does not contain any

special or critical points of ϕ other than a or b. In what follows, we assume that ϕ(y) = 1 has n+1

solutions contained in ∆+. Since the latter interval does not contain special points of ϕ, by Rolle’s

theorem, the function ϕ has at least n non-special critical points in ∆+, and by Remark 5.3, the

non-special critical points of ϕ (all n of them) are contained in ∆+.

Remark 5.3. It is proven in [Bih07, proof of Proposition 2.1] that

ϕ′(y) = yλn+1−1

n∏
i=1

Pλi−1
i (y) ·H(y), (5.2.2)

where degH ≤ n. Therefore ϕ has at most n non-special critical points.

Assume that ∆+ is a non-empty interval. Note that all special points of ϕ are contained in

RP 1, and that by definition, the endpoints of ∆+ are special points of ϕ. Choose an orientation

of RP 1 and enumerate the special points x1, . . . , xn+2 of ϕ with respect to this orientation so that

xi < xi+1 for i = 1, . . . , n+ 1 and the endpoints of ∆+ are x1 and xn+2 (see Figure 5.1). We also

renumber the polynomials Pi so that xi is the root of Pi for i = 1, . . . , n+ 2.

  

Figure 5.1: The domain of positivity ∆+.

Lemma 5.4. We have λiλi+1 < 0 for i = 1, . . . , n+ 1.

Proof. Consider a couple xi, xi+1 of two consecutive special points of ϕ with i ∈ {1, . . . , n + 1}.
Then these two points are endpoints of an open interval in RP 1 which does not contain special

points or non-special critical points. By the cycle rule, this implies that one endpoint is a root

(letter p) and the other is a pole (letter q) of ϕ.

We will assume that for i = 1, . . . , n+ 2, we have λi > 0 if i is odd, and λi < 0 if i is even.

Lemma 5.5. The non-special critical points of ϕ cannot be neighbors to each other.

Proof. First, note that all special points of ϕ are contained in RP 1 \ ∆+. Consider the branch

of Γ contained in one of the connected components of CP 1 \ RP 1 joining two non-special critical

points. Then one of the two connected components of CP 1 \ Γ adjacent to this edge will have a

boundary disobeying the cycle rule.

Lemma 5.6. A special critical point of ϕ cannot be a neighbor to more than one non-special

critical point.

Proof. Assume that there exists a special critical point α of ϕ that is a neighbor to at least two

non-special critical points of ϕ (in RP 1). Let c1 and c2 be two such consecutive non-special critical

points. Consider two branches of Γ contained in one of the connected components of CP 1 \ RP 1



77 Chapter 5. Characterization of circuits

joining α to c1 and α to c2 respectively. Then one of the two connected components of CP 1 \ Γ

adjacent to these two branches will have a boundary containing only α as a special point, and thus

disobeying the cycle rule.

Lemma 5.7. The special points x1 and xn+2 of ϕ are not neighbors to any of the non-special

critical points.

Proof. Assume that x1 is a neighbor to a non-special critical point c (the case where xn+2 is a

neighbor to c is symmetric). Recall that ∆+ does not contain special points of ϕ. Consider the

branch of Γ contained in one of the connected components of CP 1 \ RP 1 joining x1 to c. Then

one of the two connected components of CP 1 \ Γ adjacent to this branch will have a boundary

containing only x1 as a special point, and thus disobeying the cycle rule.

Recall that ϕ has n non-special critical points all contained in ∆+. Let c2, . . . , cn+1 denote

these points numbered so that xn+2 < cn+1 < cn < · · · < c2 < x1.

Proposition 5.8. For i = 2, . . . , n+ 1, the special point xi is a neighbor to ci (see Figure 5.2).

Proof. First, by Lemma 5.7, we have that the roots of P1 and Pn+2 are not neighbors to non-

special critical points. Recall that there exists n non-special critical points in ∆+. Therefore, by

Lemmata 5.5 and 5.6, we have that for i = 2, · · · , n+ 1, the special point xi is a neighbor to only

one non-special critical point cj . Consider the closed interval I ⊂ RP 1 with endpoints xi and cj
and which contains x1. The special points in I are x1, x2, . . . , xi and the non-special critical points

in I are c2, . . . , cj . Then the non-special critical points in I can only be neighbors to special points

in I \ {x1} (see Lemma 5.7). This induces a bijection between {x2, . . . , xi} and {c2, . . . , cj}, thus

i = j.

Figure 5.2: The graph Γ satisfying Proposition 5.8 for n = 3.

Lemma 5.9. The special point x1 (resp. xn+2) of ϕ can only be a neighbor to the special point x2

(resp. xn+1) of ϕ.

Proof. We prove the result only for x1 since the case for xn+2 is symmetric. Consider the open

interval I with endpoints c2 and x2 containing x1. By Proposition 5.8, we have that c2 and x2 are

neighbors. The result comes as a consequence of Lemma 5.7 and of the fact that there does not

exist special points or non-special critical points in I other than x1 (See Figure 5.3).

Lemma 5.10. For i = 1, . . . , n, the only special points which can be neighbors to xi+1 are xi and

xi+2.
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Proof. Assume first that i = 1 (the case i = n is symmetric). Recall that by Proposition 5.8, the

special point x2 (resp. x3) and c2 (resp. c3) are neighbors. Therefore, the only other possible

neighbors to x2 are x1 and x3 (see Figure 5.3).

Figure 5.3: The special point x2 can only be neighbours to x1 or x3.

Assume now that i 6= 1 and i 6= n. Recall that by Proposition 5.8 the point xi (resp. xi+2) is

a neighbor to ci (resp. ci+2). Consider the open disc C in CP 1 with boundary given by the union

of [ci+2, ci], [xi, xi+2] and the complex arcs of Γ joining ci to xi (resp. ci+2 to xi+2), and which

are contained in one given connected component of CP 1 \RP 1 (see Figure 5.4). The result follows

from the fact that the only special points in the boundary of C are xi, xi+1 and xi+2.

Figure 5.4: The region C ⊂ CP 1 \ Γ together with its boundary.

Recall that λi is positive if i is odd and negative if i is even, and thus the root xi of Pi is a

zero (resp. pole) of ϕ if i is odd (resp. even). Recall that the valency of any special point xi is the

number Vi of edges of Γ that are incident to xi.

For i = 1, . . . , n+1, denote by Ni,i+1 the number of edges of Γ in CP 1\RP 1 joining the special

points xi and xi+1. By Lemmata 5.7 and 5.9, we have V1 = N1,2 + 2 and Vn+2 = Nn+1,n+2 + 2

(each number 2 corresponds to the pair of edges of Γ in RP 1 incident to x1 and xn+2 respectively).

Moreover, for i = 2, . . . , n+1, Proposition 5.8 and Lemma 5.10 show that Vi = Ni−1,i+Ni,i+1 +4,

where the number 4 counts the branches in RP 1 together with the branches joining xi to ci.

Knowing that Vi = |2λi|, it is straightforward to compute that for k = 1, . . . , bn/2c+ 1, we have

k∑
j=1

λ2j−1 < −
k∑
j=1

λ2j <

k∑
j=0

λ2j+1 if n is even, or (5.2.3)

k∑
j=1

λ2j−1 < −
k∑
j=1

λ2j <

k∑
j=0

λ2j+1 if n is odd. (5.2.4)
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This finishes the proof of the ”only if part” of Theorem 5.1.

We now finish the description of Γ. For i ∈ {0, . . . , n+ 1}, consider the real branch L0 joining

two consecutive special points xi and xi+1 of ϕ. Let k := Ni,i+1/2, and for j = 1, . . . , k, consider

the couple of conjugate branches (Lj , Lj) joining xi to xi+1 enumerated such that the open disc of

CP 1 with boundary (Lj , Lj) and containing L0, contains the couple (Lj−1, Lj−1) as well (assuming

that L0 ≡ L0). The branch Lk (resp. Lk) does not contain a letter r since there exists a cycle of

Γ1 containing both Lk (resp. Lk) and a letter r ∈ ∆+, and thus obeying the cycle rule. On the

other hand, the branch Lk−1 (resp. Lk−1) contains a letter r where the cycle formed by the union

of Lk and Lk−1 (resp. Lk and Lk−1) and containing xi and xi+1 obeys the cycle rule. We deduce

that for j = 0, . . . , k, the branch Lj (resp. Lj) has exactly 1 or 0 letters r according as j and k− 1

have the same parity or not (see Example 5.12).

In fact, this complete description of the dessin d’enfant Γ can be used to prove the ”if” part of

Theorem 5.1 with the same techniques as in [Bih07]. However, we choose in Section 5.3 a different

method, namely Viro’s combinatorial patchworking, which shows clearly why the inequalities of

Theorem 5.1 are necessary.

Remark 5.11. From the relations described above, we see that the collection of integers Ni,i+1

is determined by the collection of the coefficients λi (and vice-versa). Moreover, we see that the

inequalities of Theorem 5.1 are equivalent to Ni,i+1 ≥ 0 for i = 1, . . . , n+ 1.

Figure 5.5: The dessin d’enfant Γ0 for n = 3.

Example 5.12. Figure 5.6 represents an example of Γ where n = 3, λ1 = 3, λ2 = −7, λ3 = 6,

λ4 = −3 and λ5 = 1. The dessin d’enfant Γ can be obtained from Γ0 (see Figure 5.5) by adding

complex branches connecting consecutive special points and letters r as described above.

Figure 5.6: An example of a dessin d’enfant Γ for n = 3 that can be constructed from Γ0.
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5.3 Proof of the “if” direction of Theorem 5.1

Assume that λi > 0 if i is odd, λi < 0 if i is even and (5.2.3) or (5.2.4) is satisfied (depending on

the parity of n). In this section, we construct polynomials Pi (see Section 5.2) such that (5.2.1)

has n + 1 solutions in ∆+. These polynomials have the form P1,t(y) = tα1y, Pn+2,t(y) = 1 and

Pi,t(y) = 1 + tαiy for i = 2, . . . , n+ 1, where t is a real positive parameter that will be taken small

enough, and each αi is a real number. The corresponding Gale polynomial (5.1.5) is

Gt(y) :=

bn/2c∏
j=0

P
λ2j+1

2j+1,t(y)−
b(n+1)/2c∏

j=1

P
−λ2j

2j,t (y). (5.3.1)

We are interested in the roots of Gt contained in ∆+,t, which is the common positivity domain of

the polynomials Pi,t. Note that here ∆+,t =]0,+∞[. The polynomial Gt is a particular case of a

Viro polynomial (c.f. [BBS06, Bih02, Vir84])

ft(y) =

d∑
p=p0

φp(t)y
p,

where t is a positive real number, and each coefficient φp(t) is a finite sum
∑

q∈Ip cp,qt
q with

cp,q ∈ R and q a real number.

We now recall how one can recover in some cases the real roots of ft for t small enough (see for

instance [BBS06]). Write f for the function of y and t defined by ft. Let D ⊂ R2 be the convex

hull of the points (p, q) for p0 ≤ p ≤ d and q ∈ Ip. Assume that D has dimension 2. Its lower hull

L is the union of the edges e1, . . . , el of D whose inner normals have positive second coordinate.

Let Ii be the image of ei under the projection R2 → R forgetting the last coordinate. Then the

intervals I1, . . . , Il subdivide the Newton segment [p0, d] of ft. Let f (i) be the facial subpolynomial

of f for the face ei. That is, the polynomial f (i) is the sum of terms cp,qy
p such that (p, q) ∈ ei.

Suppose that ei is the graph of y 7→ aiy + bi over Ii. Expanding ft(yt
−ai)/tbi in powers of t gives

ft(yt
−ai)/tbi = f (i)(y) + g(i)(y, t) and i = 1, . . . , l, (5.3.2)

where g(i)(y, t) collects the terms whose powers of t are positive. Then f (i)(y) has Newton segment

Ii and its number of non-zero roots counted with multiplicities is |Ii|, the length of the interval Ii.

Lemma 5.13. Assume that for i = 1, . . . , l, the polynomial f (i) is a binomial. Then there exists

a bijection between the set of all non-degenerate positive roots of ft for t > 0 small enough and the

set of non-degenerate positive roots of f (1), . . . , f (l).

Proof. Since f (i)(y) is a binomial, it has at most one positive root r which is simple, and there

will be a positive root ri,t of

f (i)(y) + g(i)(y, t)

near such r for t small enough. Let K ⊂ ]0,+∞[ denote a compact interval containing the positive

root of f (i) for i = 1, . . . , l. Then, for t > 0 small enough, the interval K contains the positive root

ri,t of ft(yt
−ai)/tbi . Moreover, the intervals t−a1K, . . . , t−alK are disjoint for t > 0 small enough.

This gives l positive roots of ft for t > 0 small enough. Roots of ft(yt
−ai)/tbi which are close to a

point r are positive only if r is positive, and the number of these roots is determined by the first

term f (i)(y). Since f (i)(y) is a binomial, it has only one simple positive root.
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To simplify the notations, set p0 = 0, p1 = λ1, p2 = −λ2, p3 = λ1 + λ3, . . . and pn+1 =∑n/2
j=0 λ2j+1 if n is even and pn+1 = −

∑(n+1)/2
j=1 λ2j if n is odd. Then by assumption, we have

p0 < p1 < · · · < pn+1. Set h0 = 0 and choose real numbers h1, . . . , hn+1 such that the lower part

L of the convex hull of {(pi, hi)| i = 0, . . . , n + 1} consists of the segments [(pi, hi), (pi+1, hi+1)]

for i = 0, . . . , n. Therefore, projecting L to R via the map R2 → R forgetting the last coordinate,

we get the subdivision of [0, pn+1] by the intervals [pi, pi+1] (see Figure 5.7). Set α1 = h1/p1,

α2 = h2/p2 and

αi =
hi − hi−2

pi − pi−2
for i = 3, . . . , n+ 1.

Proposition 5.14. For t > 0 small enough the polynomial (5.3.1) has n+1 roots in ∆+,t =]0,+∞[.

Proof. It is easy to see that the lower hull of the Viro polynomial

bn/2c∏
j=0

P
λ2j+1

2j+1,t(y) (5.3.3)

is composed of the segments [(p2j+1, h2j+1), (p2j+3, h2j+3)] for j = 0, . . . , bn/2c − 1. Similarly, the

lower hull of

−
b(n+1)/2c∏

j=1

P
−λ2j

2j,t (y) (5.3.4)

is composed of the segments [(p2j−2, h2j−2), (p2j , h2j)] for j = 1, . . . , b(n+1)/2c. It follows that the

lower hull of the Viro polynomial Gt is L. Now we apply Lemma 5.13 to Gt. For i = 0, . . . , n, the

facial subpolynomial G(i) corresponding to the segment [(pi, hi), (pi+1, hi+1)] ⊂ L is a binomial

where one monomial comes from (5.3.3) and the other comes from (5.3.4). Consequently, this

binomial has coefficients of different signs and thus it has one simple positive root. Therefore by

Lemma 5.13, the polynomial Gt has n+1 non-degenerate positive roots for t > 0 small enough.

Example 5.15. Choose for i = 0, . . . , n, the slope of the segment [(pi, hi), (pi+1, hi+1)] of L to be

equal to i. We compute explicitly the values α1, . . . , αn+1 of the exponent of t appearing respectively

in P1,t, . . . , Pn+1,t. We have h1 = 0, and

i =
hi+1 − hi
pi+1 − pi

for i = 0, . . . , n.

Since α1 = 0 and for i = 0, . . . , n− 1, we have αi+2 = (hi+2 − hi)/(pi+2 − pi), then

αi+2 = i+
pi+2 − pi+1

pi+2 − pi
.

Note that pi+2 − pi = λi if i is odd, and pi+2 − pi = −λi if i is even. Moreover, we have

pi+2 − pi+1 =

(i+1)/2∑
j=0

λ2j+1 +

(i+1)/2∑
j=1

λ2j if i is odd and −
(i+2)/2∑
j=1

λ2j −
i/2∑
j=0

λ2j+1 if i is even.

Therefore,

αi+2 = i+

∑bi+1c/2
j=0 λ2j+1 +

∑bi+2c/2
j=1 λ2j

λi
.
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Figure 5.7: The lower hull L of Gt for n = 4.



Chapter 6

Constructing polynomial systems
with many positive solutions

6.1 Statement of the main results

Consider a system defined on the field of real generalized locally convergent Puiseux series with

two equations in two variables supported on a set of five distinct points in Z2. We say that such

system is of type n = k = 2. Moreover, we assume that no three points of the support belong to a

line, and we say that such a system is highly non-degenerate.

6.1.1 For normalized systems

Given such a system, we prove in Section 6.3 that one can associate to it a system

a0 + ym1
1 + a2y

m2
1 yn2

2 + a3t
αym3

1 yn3
2 = 0,

b0 + ym1
1 + b2y

m2
1 yn2

2 + b4t
βym4

1 yn4
2 = 0,

(6.1.1)

with equations in RK[y±1
1 , y±1

2 ], that has the same number of positive non-degenerate solutions,

and satisfying that all ai and bj belong to RK∗ and verify ord(ai) = ord(bj) = 0, all mi, ni belong

to Z with m1, n2 > 0, and both α, β are real numbers. A highly non-degenerate system 6.1.1

satisfying the latter conditions is called a normalized system.

We prove in Section 6.5 the following result.

Theorem 6.1. If (α, β) 6= (0, 0), then (6.1.1) has at most nine non-degenerate positive solutions.

In Subsection 6.5.2, we construct a system (6.1.1) having seven non-degenerate positive solu-

tions, and thus proving the following.

Theorem 6.2. There exists a system (6.1.1) having seven non-degenerate positive solutions.

In the last two sections of this chapter, we refine Theorem 6.1 by proving the following result.

Theorem 6.3. If α 6= β or α = β < 0, then the sharp bound on the number of positive solutions

of (6.1.1) is six.
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We prove in Section 6.6 Theorem 6.3 when coef(ai) = coef(bi) for i = 0, 2, and in Section 6.7,

we prove this result when

αβ 6= 0,
coef(a0)

coef(b0)
6= coef(a2)

coef(b2)
and coef(ai) 6= coef(bi) for i = 0, 2.

In fact, due to Lemmata 6.30 and 6.31 of Section 6.4, the conditions of Sections 6.6 and 6.7 are

complementary given that (α, β) 6= (0, 0).

Theorem 6.3 was merely to give a direction to follow in order to construct a system (6.1.1)

that has more than six non-degenerate positive solutions.

6.1.2 Transversal intersection points

Consider a (not necessarily normalized) system

f1 = f2 = 0 (6.1.2)

of type n = k = 2, where f1, f2 ∈ RK[z±1
1 , z±1

2 ]. Assume that the tropical curves T1 and T2

associated to f1 and f2 intersect transversally. Let W1,W2 ⊂ Z2 denote the supports of f1 and f2

respectively. Note that |W1 ∪W2| = 5. Then by [Bih14, Theorem 1.1], the following result implies

that the number of intersection points of T1 and T2 is at most six.

Lemma 6.4. The discrete mixed volume (see (2.2.3) in Subsection 2.2.5 of Chapter 2) D(W1,W2)

does not exceed six.

Proof. We distinguish the five possible cases |W1 ∩W2| = i for i = 1, . . . , 5, and prove the result

for i = 3, 4 since the case i = 5 is proven in [Bih14] and the other cases are similar. The discrete

mixed volume of W1 and W2 is expressed as

D(W1,W2) = |W1 +W2| − |W1| − |W2|+ 1. (6.1.3)

Assume first that |W1 ∩W2| = 4. Then the cardinal of one of the two sets, say W1, is equal to

four. Writing W1 = {w0, w1, w2, w3} and W2 = {w0, w1, w2, w3, w4}, we get

W1 +W2 =

3⋃
i=0

{wi + wj | j = 0, . . . , 4, j ≥ i},

and thus |W1 +W2| ≤ 14. Therefore, with |W1| = 4 and |W2| = 5, we deduce that D(W1,W2) ≤ 6.

Assume now that |W1 ∩W2| = 3. We distinguish two cases

i) First case: |W1| = 3 and |W2| = 5 (the case where |W1| = 5 and |W2| = 3 is symmetric).

Writing W1 = {w0, w1, w2} and W2 = {w0, w1, w2, w3, w4}, we get

W1 +W2 =

2⋃
i=0

{wi + wj | j = 0, . . . , 4, j ≥ i},

and thus |W1 + W2| ≤ 12. Therefore, with |W1| = 3 and |W2| = 5, we deduce that

D(W1,W2) ≤ 5.
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ii) Second case: |W1| = |W2| = 4. Writing W1 = {w0, w1, w2, w3} and W2 = {w1, w2, w3, w4},
we get

W1 +W2 =

3⋃
i=0

{wi + wj | j = 1, . . . , 4, j ≥ i},

and thus |W1 + W2| ≤ 13. Therefore, with |W1| = 4 and |W2| = 4, we deduce that

D(W1,W2) ≤ 6.

We prove that the bound in Lemma 6.4 is sharp and in fact can be realized by positive inter-

section points of two tropical curves.

Proposition 6.5. There exist two plane tropical curves T1 and T2 defined by equations containing

a total of five monomials and which have six positive transversal intersection points.

An explicit system proving Proposition 6.5 is given in Example 6.38 (see Subsection 6.4.1).

6.2 Non-transversal intersection components of type (I)

Consider the polynomials

f(y) :=

r∑
i=0

µiy
vi and g(y) :=

s∑
i=0

νiy
wi ,

where f and g belong to RK[y±1
1 , y±1

2 ]. Let ∆f and ∆g (resp. τf and τg, Tf and Tg) denote the

Newton polytopes (resp. dual subdivisions, tropical curves) associated to f and g respectively.

Consider the system

f = g = 0, (6.2.1)

with total support not contained in any hyperplane of R2 and satisfying that all solutions of (6.2.1)

in (K∗)2 are non-degenerate.

If ξ is an isolated point of Tf ∩ Tg, we have that z 7→ coef(z) induces a bijection from the

set of non-degenerate solutions in (RK>0)2 of the system (6.2.1) with valuation ξ to the set of

non-degenerate positive solutions of the reduced system with respect to ξ (see Proposition 2.23).

When ξ is not a point (i.e. an intersection of type (I)), some of the points in the relative interior
◦
ξ of ξ are not valuations of solutions of (6.2.1) in (K∗)2. In fact, we are interested in positive

solutions of (6.2.1). Here, we give a way to compute

Val
(
{z ∈ (RK>0)2 | f(z) = g(z) = 0}

)
∩

◦
ξ

and the coefficients of the first order terms of {z ∈ (RK>0)2 | f(z) = g(z) = 0} with valuation in
◦
ξ (see Remark 6.7).

Assume that Tf and Tg have a non-transversal intersection component ξ of type (I) and that
◦
ξ contains the valuations of positive solutions of the latter system. Recall that

◦
ξ is the relative

interior of the intersection of a face ξf of Tf and a face ξg of Tg satisfying dim(ξf ) = dim(ξg) =

dim(ξf ∩ ξg) = 1. Assume that each of ∆ξf ∩Z2 and ∆ξg ∩Z2 has only two points belonging to the

support of f and g respectively so that these points are endpoints of ∆ξf and ∆ξg respectively. In
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this section, we introduce a method for computing the valuations in
◦
ξ of non-degenerate positive

solutions of (6.2.1).

Figure 6.1: A monomial change of coordinates that acts on the type-(I) intersection cell.

Proposition 6.6. There exists a system

c0 + c1y
k1
1 +

r∑
i=2

ciy
ki
1 y

li
2 = d0 + d1y

m1
1 +

s∑
i=2

diy
mi
1 yni2 = 0 (6.2.2)

defined by polynomials in RK[y±1
1 , y±1

2 ] which satisfies the following properties.

i) coef(c0) = coef(d0) = −1, coef(c1) = coef(d1) = 1, ord(c0) = ord(d0) = ord(c1) =

ord(d1) = 0 and k1, m1 are positive integers. The tropical curves associated to (6.2.2)

intersect non-transversally at a cell E of type (I) contained in {0}× ]−∞, 0[ with endpoints
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v = (0, κ) and v0 = (0, κ0), where

κ = max{x2 | 0 = max{val(ci) + lix2 , val(di) + nix2 | i = 2, . . . , r , i = 2, . . . , s}}

and

κ0 = min{x2 | 0 = max{val(ci) + lix2 , val(di) + nix2 | i = 2, . . . , r , i = 2, . . . , s}}

(we may have κ0 = −∞ when E is unbounded).

ii) The systems (6.2.1) and (6.2.2) have the same number of non-degenerate solutions in (K∗)2.

Moreover, they have the same number of non-degenerate positive solutions with valuations

in
◦
ξ and

◦
E respectively.

Proof. In what follows, we make transformations on (6.2.1) to obtain the system (6.2.2) so that (6.2.1)

and (6.2.2) have the same number of non-degenerate solutions in (K∗)2. Moreover, the latter

transformation maps each non-degenerate positive solution of (6.2.1) with valuation in
◦
ξ to a non-

degenerate positive solution of (6.2.2) with valuations in
◦
E so that this mapping is a bijection.

The intersection component ξ has a direction orthogonal to the edge ∆ξf ∈ τf dual to ξf and to

the edge ∆ξg ∈ τg dual to ξg, thus both these segments are parallel. Enumerate the exponent

vectors v0, . . . , vr and w0, . . . , ws so that the equations defining the relative interiors of ξf and ξg
are expressed as

{x ∈ R2| 〈x, v0〉+ val(µ0) = 〈x, v1〉+ val(µ1) >
r

max
i=2

(〈x, vi〉+ val(µi))}

and

{x ∈ R2| 〈x,w0〉+ val(ν0) = 〈x,w1〉+ val(ν1) >
s

max
i=2

(〈x,wi〉+ val(νi))}

respectively, and so that λ(v1 − v0) = (w1 − w0) for some λ ∈ R∗+. The endpoints of ∆ξf and

∆ξg are v0, v1 and w0, w1 respectively. Moreover, one can assume that v0 = w0 = (0, 0). Doing a

monomial change of coordinates if necessary, we may assume that both these edges are horizontal

(zero second coordinate), and v1 = (0, k1) and w1 = (0,m1) for some positive integers k1 and m1.

Set coef(µ0) = coef(ν0) = −1 by dividing the first (resp. second) equation of (6.2.1) by − coef(µ0)

(resp. − coef(ν0)). Since
◦
ξ contains valuations of positive solutions of (6.2.1), the reduced system

− 1 + coef(µ1)yk11 = −1 + coef(ν1)ym1
1 = 0 (6.2.3)

has a positive solution

y1 =

(
1

coef(µ1)

) 1
k1

=

(
1

coef(ν1)

) 1
m1

.

Set coef(µ1) = coef(ν1) = 1 by replacing y1 by (1/ coef(µ1))(1/k1)y1 in (6.2.1). Without loss of

generality, we may assume that ord(µ0) = ord(ν0) = 0. Denote vi = (ki, li) and wi = (mi, ni)

for i = 2, . . . , r and i = 1, . . . , s. Since v0 = w0 = (0, 0), a point (x1, x2) ∈ R2 belonging

to ξ satisfies 0 = k1x1 + val(µ1) > max{kix1 + lix2 + val(µi), i = 2, . . . , r} and 0 = m1x1 +

val(ν1) > max{mix1 + nix2 + val(νi), i = 2, . . . , s}, and thus val(µ1)/k1 = val(ν1)/m1. Set

val(µ1) = val(ν1) = 0 by replacing y1 by tval(µ1)/k1y1 in (6.2.1). The cell ξ is now contained in

the second-coordinate axis of R2. Recall that ξ is either a segment or of a half-line. Replacing y2
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by tγy2 in (6.2.1) for some real number γ translates Tf ∪ Tg vertically, and y2 by y−1
2 acts as a

symmetry on Tf ∪Tg with respect to the first-coordinate axis of R2. We use these transformations

so that the resulting
◦
ξ is situated entirely below the first-coordinate axis of R2. Therefore, an

endpoint v of ξ is a point (0, x2) ∈ R2 satisfying 0 = k1x1 ≥ max{val(µi) + lix2, i = 2, . . . , r} and

0 = m1x1 ≥ max{val(νi) + nix2, i = 2, . . . , s}, and thus if v is the closest endpoint of ξ to the

origin of R2, then the second coordinate κ of v is equal to

max{x2 | 0 = max{val(µi) + lix2 , val(νi) + nix2 | i = 2, . . . , r , i = 2, . . . , s}}.

Similarly, we show that the second coordinate κ0 of v0 (κ0 = −∞ if E is unbounded) is equal to

min{x2 | 0 = max{val(µi) + lix2 , val(νi) + nix2 | i = 2, . . . , r , i = 2, . . . , s}}.

Remark 6.7. We have the following:

a) Since the transformations from (6.2.1) to (6.2.2) are a series of change of coordinates, con-

dition ii) of Proposition 6.6 gives a bijection between the set of non-degenerate positive

solutions of (6.2.1) with valuation in
◦
ξ, and the set of such solutions with valuations in

◦
E.

b) If (α, β) ∈ (K∗)2 is a non-degenerate solution of (6.2.2) with Val(α, β) in
◦
E, then condi-

tion i) of Proposition 6.6 implies that coef(α) = 1 and ord(α) = 0. Thus, to determine

Val(α, β) and Coef(α, β), it remains to determine val(β) and coef(β). This is the purpose

of Proposition 6.8.

Thanks to Proposition 6.6, we are interested in non-degenerate positive solutions of (6.2.2) with

valuation in
◦
E ⊂ {0}× ]−∞, 0[. We also assume that (6.2.2) satisfies property i) of Proposition 6.6.

Consider the polynomial

A(y)/k1 −B(y)/m1 (6.2.4)

with

A(y) = coef(c0 + c1)tord(c0+c1) +

r∑
i=2

coef(ci)t
ord(ci)yli

and

B(y) = coef(d0 + d1)tord(d0+d1) +

s∑
i=2

coef(di)t
ord(di)yni .

Proposition 6.8. If (α, β) ∈ (RK∗)2 is a non-degenerate solution of (6.2.2) such that ord(α) = 0

and coef(α) = 1, then there exists a non-degenerate root γ ∈ RK∗ of (6.2.4) such that ord(γ) =

ord(β) and coef(γ) = coef(β).

Proof. Assume that (α, β) ∈ (RK∗)2 is a non-degenerate solution of (6.2.2) such that ord(α) = 0

and coef(α) = 1. Then α = 1 + δ with δ ∈ RK and ord(δ) > 0. Replacing y1 by 1 + x and y2 by

y, the system (6.2.2) becomes

P (x, y) = Q(x, y) = 0, (6.2.5)
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where

P (x, y) = c0 + c1 +

k1∑
i=1

c1

(
k1

i

)
xi +

r∑
i=2

ci (1 + x)
ki yli

and

Q(x, y) = d0 + d1 +

m1∑
j=1

d1

(
m1

j

)
xi +

s∑
i=2

di (1 + x)
mi yni .

Set ai = ci for i = 2, . . . , r and a1 = c0 + c1. Similarly, set bi = di for i = 2, . . . , s and b1 = d0 +d1.

Then (6.2.5) becomes

k1∑
i=1

c1

(
k1

i

)
xi + a1 +

∑r
i=2 ai (1 + x)

ki yli = 0,

m1∑
i=1

d1

(
m1

i

)
xi + b1 +

∑s
i=2 bi (1 + x)

mi yni = 0.

(6.2.6)

From ord(δ) > 0, we deduce that

a1 +

r∑
i=2

ai (1 + δ)
ki βli and b1 +

s∑
i=2

bi (1 + δ)
mi βni

have the same order as

A(β) =

r∑
i=1

coef(ai)t
ord(ai)βli and B(β) =

s∑
i=1

coef(bi)t
ord(bi)βni

respectively, where l1 = n1 = 0.

Consider the two polynomials g, h in RK[x] defined by g(x) = k1(c1 − 1)x +
∑k1

i=2 c1
(
k1
i

)
xi

and h(x) = m1(d1 − 1)x+
∑m1

i=2 d1

(
m1

i

)
xi so that

k1∑
i=1

c1

(
k1

i

)
xi = k1x+ g(x) and

m1∑
j=1

d1

(
m1

i

)
xi = m1x+ h(x).

Set ord(β) = β0. Then M = min{liβ0 + ord(ai), i = 1, . . . , r} is the order of A(β). Similarly,

N = min{β0ni + ord(bi), i = 1, . . . , s} is the order of B(β). Denote by I (resp. J) the set

{i ∈ [r] | liβ0 + ord(ai) = M} (resp. {i ∈ [s] | niβ0 + ord(bi) = N}).
Plugging (tord(δ)x, tβ0y) in (6.2.6), and dividing its first and second equation by k1t

M and

m1t
N respectively will not change the number of its solutions in RK × RK∗. Expanding both

polynomials of (6.2.6) in terms of x and y gives

tord(δ)−Mx + t−Mg(tord(δ)x)/k1 +
∑

i∈I coef(ai/k1)yli + G(x, y) = 0,

tord(δ)−Nx + t−Nh(tord(δ)x)/m1 +
∑

i∈J coef(bi/m1)yni + H(x, y) = 0,

(6.2.7)

where all the coefficients of the polynomials G and H of RK[x±1, y±1] have positive orders. Note

that the polynomials g and h have coefficients with non-negative orders. Indeed, since ord(c1) =

ord(d1) = 0 and coef(c1) = coef(d1) = 1, we have ord(c1 − 1) > 0 and ord(d1 − 1) > 0.
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Doing slight perturbations on the coefficients of (6.2.4), we may assume without loss of gener-

ality that the polynomial (6.2.4) has only non-degenerate roots in RK∗, and that for any I ⊂ [r],

J ⊂ [s] the polynomials
∑

i∈I coef(ai)y
li and

∑
i∈J coef(bi)y

ni don’t have a non-zero common root.

Such perturbations do not change the number of non-degenerate solutions of (6.2.5) in RK×RK∗

nor do they change the number of non-degenerate roots of (6.2.4) in RK∗. We have that at least

one of ord(δ)−M and ord(δ)−N is equal to zero and none of them can be negative.

Indeed, assume first that both of them are positive. Note that from ord(δ) > 0, we have

min(ord(g(δ)), ord(h(δ))) > ord(δ) if δ 6= 0. Moreover, since (δ, β) ∈ RK×RK∗ is a non-degenerate

solution of (6.2.6), for t > 0 small enough, we have that coef(β) is a real non-degenerate solution

of ∑
i∈I

coef(ai/k1)yli =
∑
i∈J

coef(bi/m1)yni = 0,

a contradiction. Assume now that we have for example ord(δ)−M is negative. Divide the first equa-

tion of (6.2.7) by tord(δ)−M . Then we get terms t− ord(δ)g(tord(δ)x)/k1, tM−ord(δ)
∑

i∈I coef(ai/k1)yli

and tM−ord(δ)G(x, y) which tend to zero when t → 0. This proves that coef(δ) = 0, which means

that δ = 0. It follows that coef(β) is a non-degenerate real solution of∑
i∈I

coef(ai/k1)yli =
∑
i∈J

coef(bi/m1)yni = 0,

a contradiction.

We conclude that δ is non-zero and we study two cases.

i) First case: M = N = ord(δ). Since (δ, β) ∈ (RK∗)2 is a solution of (6.2.6), taking t > 0

small enough, we get that (coef(δ), coef(β)) is a real solution of

x+
∑
i∈I

coef(ai/k1)yli = x+
∑
i∈J

coef(bi/m1)yni = 0. (6.2.8)

Taking the difference of the two non-zero polynomials appearing in (6.2.8), we deduce that

coef(β) is a real root of ∑
i∈I

coef(ai/k1)yli −
∑
i∈J

coef(bi/m1)yni .

On the other hand, we have

A(tβ0y)/(k1t
ord(δ)) =

∑
i∈I

coef(ai/k1)yli +
∑
i6∈I

coef(ai/k1)tβ0li+ord(ai)−ord(δ)yli

and

B(tβ0y)/(m1t
ord(δ)) =

∑
i∈J

coef(bi/m1)yni +
∑
i6∈J

coef(bi/m1)tβ0ni+ord(bi)−ord(δ)yni .

Consequently, A(tβ0y)/(k1t
ord(δ))−B(tβ0y)/(m1t

ord(δ)) has a root ρ ∈ RK∗ with ord(ρ) = 0

and ρ(0) = coef(β), and thus, γ = tβ0ρ is a root of (6.2.4).
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ii) Second case: ord(δ) = N > M (the case where ord(δ) = M > N is symmetric). Similarly,

since (δ, β) ∈ (RK∗)2 is a solution of (6.2.6), when t > 0 is small enough, we have that

(coef(δ), coef(β)) is a real solution of∑
i∈I

coef(ai/k1)yli = x+
∑
i∈J

coef(bi/m1)yni = 0. (6.2.9)

On the other hand, all coefficients of t−MB(tβ0y) have positive order. Indeed, since M < N ,

we have ord(bi) + niβ0 −M > 0 for i = 1, . . . , s. Consequently,∑
i∈I

coef(ai/k1)yli +
∑
i 6∈I

coef(ai/k1)tβ0li+ord(ai)−Myli − t−MB(tβ0y)/m1

has a root ρ ∈ RK∗ with ord(ρ) = 0 and ρ(0) = coef(β). Therefore, γ = tβ0ρ is a root

of (6.2.4).

Similarly to the one that appeared in Chapter 5, the polynomial ft defined by the equation

in (6.2.4) is a particular case of a Viro polynomial (c.f. [BBS06, Bih02, Vir84]). We recall now the

description for ft that was made in Section 5.3 of Chapter 5.

Write ft(y) =
∑d

p=p0
φp(t)y

p, where t is a positive real number, and each coefficient φp(t) is

a finite sum
∑

q∈Ip cp,qt
q with cp,q ∈ R and q a real number. Write f for the function of y and t

defined by ft. Let D ⊂ R2 be the convex hull of the points (p, q) for p0 ≤ p ≤ d and q ∈ Ip. Assume

that D has dimension 2. Its lower hull Γ is the union of the edges e1, . . . , el of D whose inner

normals have positive second coordinate. Let Ii be the image of ei under the projection R2 → R
forgetting the last coordinate. Then the intervals I1, . . . , Il subdivide the Newton segment [p0, d]

of ft. Let f (i) be the facial subpolynomial of f for the face ei. That is, f (i) is the sum of terms

cp,qy
p such that (p, q) ∈ ei. Suppose that ei is the graph of y 7→ λiy + µi over Ii. Expanding

ft(yt
−λi)/tµi in powers of t gives

ft(yt
−λi)/tµi = f (i)(y) + g

(i)
t (y) and i = 1, . . . , l, (6.2.10)

where g
(i)
t ∈ RK[y] collects the terms whose powers of t are positive. Then f (i)(y) has Newton

segment Ii and its number of non-degenerate non-zero roots in K counted with multiplicities is

|Ii|, the integer length of the interval Ii.

Definition 6.9. An element y0 in K∗ is largely ordered with respect to

ft =
∑d

p=p0
φp(t)y

p if p · ord(y0) + ord(φp(t)) > 0 for p = p0, . . . , d.

Recall that we are interested in the number of non-degenerate positive solutions (α, β) ∈
(RK∗)2 of (6.2.2) such that Val(α, β) ∈

◦
E = ](0, κ0), (0, κ)[. By Proposition 6.8, this number is

bounded by the number of non-degenerate positive roots γ of the polynomial ft appearing in (6.2.4)

which satisfy val(γ) ∈ ]κ0, κ[.

Lemma 6.10. If Val(α, β) ∈
◦
E for some (α, β) ∈ (RK∗)2, then β is largely ordered with respect

to ft.
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Proof. Recall that ft is defined by (6.2.4). Assume that Val(α, β) ∈
◦
E for some (α, β) ∈ (RK∗)2.

Then since E ⊂ {0} × R, we have val(α) = 0. Moreover, val(β) satisfies 0 > maxri=2{val(ci) +

li val(β)} and 0 > maxri=2{val(dj) + nj val(β)}. Indeed, from condition i) of Proposition 6.6, we

have that Val(α, β) belongs to the relative interior of the duals of [0, k1] and [0,m1]. Therefore,

β is largely ordered from val(ci) + li val(β) = − ord(ci) − li ord(β) and val(dj) + nj val(β) =

− ord(dj)− nj ord(β).

Doing perturbations on the coefficients appearing in the polynomials f (i), we may assume that

for i = 1, . . . , l, the roots of f (i) are non-degenerate. Recall equation (6.2.10) relating ft to the

facial subpolynomials fi.

Lemma 6.11. If γ is largely ordered with respect to ft and a non-degenerate non-zero root of ft,

then there exists i ∈ [l] such that coef(γ) is a non-degenerate non-zero root of f (i), val(γ) = λi and

µi > 0. This induces a bijection between the set of largely ordered non-degenerate non-zero roots γ

of ft and the set of non-degenerate non-zero roots of the polynomials f (i) such that µi > 0.

Proof. Assume that γ is a largely ordered non-degenerate root of ft with ord(γ) = β0 and coef(γ) =

ρ0 6= 0. Write ft(t
β0y) as

ft(t
β0y) = tδ(r(y) + st(y)) (6.2.11)

for some δ ∈ R, r ∈ R[y] and st ∈ RK[y], where all exponents of t in st(y) are positive. Then

the Newton polytope of tδr(y) is a face of the Newton polytope of ft(t
β0y). Since γ is a non-zero

root of ft with ord(γ) = β0, the polynomial ft(t
β0y) has a non-zero root y0 with ord(y0) = 0. It

follows that ρ0 = coef(y0) is a non-zero root of r(y), and thus r(y) has at least two terms (its

Newton polytope is a segment). The Newton polytope of ft(t
β0y) is obtained from that of ft(y)

by a linear map (a, b) 7→ (a, b+ β0a). Note that such linear map (independent of β0 ∈ R) maps a

lower face to a lower face. Comparing with (6.2.10), we obtain that there exists i ∈ [l] such that

r = f (i), s = g(i), β0 = −λi and δ = µi. Therefore, when t > 0 is small enough, tλiγ is close to a

non-degenerate root of f (i)(y). Let M be the minimum of the quantities p ord(tβ0y) + ord(φp(t)),

p = 0, . . . , d. Then M > 0 since γ is largely ordered. Now ft(t
β0y) =

∑d
p=p0

φp(t)t
pβ0yp with

ord(φp(t)t
pβ0) ≥ M and there is at least one equality. Comparing with (6.2.11), we get M = δ

and thus µi = M > 0.

Assume that ρ0 is a non-degenerate non-zero root of f (i) and µi is positive. Then (6.2.10) will

have a root ρ ∈ RK∗ with ord(ρ) = 0 and ρ(0) = ρ0 for t > 0 small enough. Therefore, γ = t−λiρ

is a non-degenerate root of ft. Finally, γ is largely ordered since µi > 0.

If (α, β) is a solution of (6.2.2) such that Val(α, β) ∈
◦
E, then α = 1 + x with ord(x) > 0.

Plugging (1+x, β) in (6.2.2), gives a polynomial system in (x, β) which does not depend on coef(c0),

coef(c1), coef(d0) or coef(d1). This follows from coef(c0) = coef(d0) = −1, coef(c1) = coef(d1) = 1,

ord(c0) = ord(d0) = ord(c1) = ord(d1) = 0 (see Proposition 6.6). Therefore, perturbing slightly

c2, . . . , cr, d2, . . . , ds and the non-constant terms of c0, d0, c1, d1, we may assume without loss of

generality that if (α, β) and (α′, β′) are two different solutions of (6.2.2) with valuations in E, then

coef(β) 6= coef(β′). Obviously, such a perturbation does not change the number of non-degenerate

positive solutions of (6.2.2). It follows from Proposition 6.8 that the set of positive solutions (α, β)

of (6.2.2) with Val(α, β) ∈
◦
E is mapped injectively to the set of positive roots γ of (6.2.4). Set

I := {y ∈ R>0 | ∃i ∈ [l] ; fi(y) = 0, λi ∈]κ0, κ[, µi > 0}.

We have the following Corollary.



93 Chapter 6. Constructing polynomial systems

Corollary 6.12. If (α, β) ∈ (RK>0)2 is a non-degenerate solution of (6.2.2) such that Val(α, β) ∈
◦
E, then coef(α) = 1, ord(α) = 0 and for some i ∈ [l], we have fi(coef(β)) = 0 and ord(β) = −λi.
This induces an injection (z1, z2) 7→ coef(z2) from the set of non-degenerate positive solutions

of (6.2.2) with valuation in E, onto the set I.

Proof. It is clear from before that if (6.2.2) has a solution (α, β) ∈ (RK∗)2 with valuation in
◦
E,

then coef(α) = 1 and ord(α) = 0.

Proposition 6.8 and Lemma 6.10 show that the set of non-degenerate solutions (α, β) ∈
(RK>0)2 of (6.2.2) such that Val(α, β) ∈

◦
E is mapped injectively onto the set of non-degenerate

roots γ of ft that are largely ordered with respect to ft and that satisfy ord(γ) = ord(β) ∈ ]−κ,−κ0[

and coef(γ) = coef(β). Moreover, Lemma 6.11 shows that the set of such roots γ is in bijection with

the set of positive non-degenerate non-zero roots ρ0 of the polynomials f (i) such that λi = − ord(γ),

coef(γ) = ρ0 and µi > 0.

Definition 6.13. We say that the polynomial ft in (6.2.4) is an approximation polynomial

of (6.2.1) for ξ.

Now, to sum up this Section. One can approximate combinatorically all non-degenerate positive

solutions of (6.2.1) with valuation contained in the relative interior
◦
ξ of a cell ξ of type (I) by

computing their first-order terms. In order to achieve that, Proposition 6.6 shows that it suffices

to determine the first-order terms of the non-degenerate solutions (α, β) ∈ (RK>0)2 of (6.2.2) with

valuation in
◦
E (see Figure 6.2). The first-order term of α is 1 · t0, and by Corollary 6.12, there

exists i ∈ [l] such that fi(β) = 0, ord(β) = −λi and µi > 0. The numbers λi and µi are determined

from the lower hull of D (the Newton polytope of g(y, t) := ft(y)).

Figure 6.2: Lower part of D associated to ft: here, λi < 0 and µi > 0

6.3 Base fans and tropical intersections

In this section, we consider a system defined on the field of real generalized locally convergent

Puiseux series with two equations in two variables supported on a set of five distinct points in Z2.
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We say that such system is of type n = k = 2. Moreover, we assume that no three points of the

support belong to a line. We say that such a system is highly non-degenerate.

Lemma 6.14. Given any system of polynomials in RK[z±1
1 , z±1

2 ] of type n = k = 2, one can

associate to it a system

a0z
w0 + a1z

w1 + a2z
w2 + a3t

αzw3 = 0,

b0z
w0 + b1z

w1 + b2z
w2 + b4t

βzw4 = 0,
(6.3.1)

with equations in RK[z±1
1 , z±1

2 ], that has the same number of positive non-degenerate solutions,

where all ai and bj are in ∈ RK∗ and verify ord(ai) = ord(bj) = 0, all wi are in Z2 and both α, β

are real numbers.

Proof. Using linear combinations, any system of type n = k = 2 can be reduced to a system

c0t
α0zw̃0 + c1t

α1zw̃1 + c2t
α2zw̃2 + c3t

α3zw̃3 = 0,

d0t
β0zw̃0 + d1t

β1zw̃1 + d2t
β2zw̃2 + d4t

β4zw̃4 = 0
(6.3.2)

that has the same number of positive non-degenerate solutions, where all ci and dj are in ∈ RK∗

and verify ord(ci) = ord(dj) = 0, all w̃i are in Z2 and all exponents of t are real numbers. Assume

first that αi−α1 6= βi− β1 for i = 0, 2. By symmetry, the different possibilities of inequalities can

be reduced to only two cases.

• First case: α0 − α1 < β0 − β1 and α2 − α1 < β2 − β1.

Since we are interested in non-degenerate positive solutions, we may suppose that w̃0 = (0, 0).

The system

(c0/c1)tα0−α1zw̃0 + zw̃1 + (c2/c1)tα2−α1zw̃2 + (c3/c1)tα3−α1zw̃3 = 0,

c̃0t
α0−α1zw̃0 + c̃2t

α2−α1zw̃2 + (c3/c1)tα3−α1zw̃3 − (d4/d1)tβ4−β1zw̃4 = 0
(6.3.3)

has the same number of non-degenerate positive solutions as (6.3.2). Indeed, the first equa-

tion of (6.3.3) is obtained by dividing the first equation of (6.3.2) by c1t
α1 , whereas the second

equation of (6.3.3) is obtained by dividing the first equation of (6.3.2) by c1t
α1 and subtract-

ing from it the second equation of (6.3.2) divided by d1t
β1 . Note that coef(c̃i) = coef(ci/c1)

and ord(c̃1) = 0 for i = 0, 2. We divide both equations of (6.3.3) by tα0−α1 and set w3 = w̃1,

w2 = w̃3, w1 = w̃2 and wi = w̃i for i = 0, 4. Finally replacing (z1, z2) by (tkz1, t
lz2) in (6.3.3)

for some real numbers k and l satisfying 〈(k, l), w2〉 = α0 − α3 and 〈(k, l), w1〉 = α0 − α2

does not change the number of positive non-degenerate solutions of (6.3.3). This gives a sys-

tem of the form (6.3.1) with the same number of non-degenerate positive solutions as (6.3.2).

• Second case: α0 − α1 < β0 − β1 and α2 − α1 > β2 − β1.

Note that this case gives α2 − α0 > β2 − β0. Since we are interested in non-degenerate

positive solutions, we may suppose that w̃4 = (0, 0). The system

(d1/d0)tβ1−β0zw̃1 + (d2/d0)tβ2−β0zw̃2 + (d4/d0)tβ4−β0zw̃4 + zw̃0 = 0,

d̃1t
β1−β0zw̃1 + d̃2t

β2−β0zw̃2 − (c3/c0)tα3−α0zw̃3 + (d4/d0)tβ4−β0zw̃4 = 0
(6.3.4)
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has the same number of non-degenerate positive solutions as (6.3.2). Indeed, the first equa-

tion of (6.3.4) is obtained by dividing the second equation of (6.3.2) by d0t
β0 , whereas

the second equation of (6.3.4) is obtained by dividing the second equation of (6.3.2) by

d0t
β0 and subtracting from it the first equation of (6.3.2) divided by c0t

α0 . Note that

coef(d̃i) = coef(di/d0) and ord(d̃i) = 0 for i = 1, 2. We divide both equations of (6.3.4)

by tβ4−β0 and set w0 = w̃4, w4 = w̃0 and wi = w̃i for i = 1, 2, 3. Finally replacing (z1, z2)

by (tkz1, t
lz2) in (6.3.4) for some real numbers k and l satisfying 〈(k, l), w1〉 = β4 − β1

and 〈(k, l), w2〉 = β4 − β2 does not change the number of positive non-degenerate solutions

of (6.3.5). This gives a system of the form (6.3.1) with the same number of non-degenerate

positive solutions as (6.3.2).

Assume now that we have αi − α1 = βi − β1 for either i = 0 or i = 2. The case where we

have equality for both i = 0 and i = 2 is trivial. Without loss of generality, we may suppose that

α0 − α1 = β0 − β1 and α2 − α1 < β2 − β1. Note that this case gives β0 − β2 < α0 − α2. Since we

are interested in non-degenerate positive solutions, we may suppose that w̃0 = (0, 0). The system

(d0/d2)tβ0−β2zw̃0 + (d1/d2)tβ1−β2zw̃1 + zw̃2 + (d4/d2)tβ4−β2zw̃4 = 0,

d̃0t
β0−β2zw̃0 + d̃1t

β1−β2zw̃1 − (c3/c2)tα3−α0zw̃3 + (d4/d2)tβ4−β2zw̃4 = 0
(6.3.5)

has the same number of non-degenerate positive solutions of (6.3.2). Indeed, the first equation

of (6.3.5) is obtained by dividing the second equation of (6.3.2) by d2t
β2 , whereas the second

equation of (6.3.5) is obtained by dividing the second equation of (6.3.2) by d2t
β2 and subtracting

from it the first equation of (6.3.2) divided by c2t
α2 . Note that coef(d̃i) = coef(di/d2) and

ord(d̃i) = 0 for i = 0, 1. We divide both equations of (6.3.5) by tβ0−β2 and set w2 = w̃4, w4 = w̃2

and wi = w̃i for i = 0, 1, 3. Finally replacing (z1, z2) by (tkz1, t
lz2) in (6.3.5) for some real numbers

k and l satisfying 〈(k, l), w1〉 = β1 − β0 and 〈(k, l), w2〉 = β4 − β0 does not change the number of

positive non-degenerate solutions of (6.3.5). This gives a system of the form (6.3.1) with the same

number of non-degenerate positive solutions as (6.3.2).

Consider a system (6.3.1) satisfying all the hypotheses of Lemma 6.14. Since we are interested

in its non-degenerate positive solutions, we may assume that w0 = (0, 0). Moreover, without

loss of generality, we may assume that a1 = b1 = 1. For the simplicity of further computations,

we make the following change of coordinates. Let m1 be the greatest common divisor of the

coordinates of w1. Setting y1 = z
w1
m1 and choosing any basis of Z2 with first vector 1

m1
· w3, we

get a monomial change of coordinates (z1, z2) 7→ (y1, y2) of (RK∗)2 such that zw1 = ym1
1 and

zw2 = ym2
1 yn2

2 . Replacing y2 by y−1
2 if necessary, we assume that n2 > 0. Indeed, n2 6= 0, since by

assumption the support of (6.3.1) is highly non-degenerate. With respect to these new coordinates,

the system (6.3.1) becomes the following normalized system (see Section 6.1 for the definition).

a0 + ym1
1 + a2y

m2
1 yn2

2 + a3t
αym3

1 yn3
2 = 0,

b0 + ym1
1 + b2y

m2
1 yn2

2 + b4t
βym4

1 yn4
2 = 0.

(6.3.6)

Note that (6.3.1) and (6.3.6) have the same number of positive solutions. Later, we denote by wi
the vector (mi, ni) in (6.3.6).

Let T1 (resp. ∆1, τ1) denote the tropical hypersurface (resp. the Newton polytope, the dual

subdivision of the Newton polytope) associated to the polynomial in the first equation of (6.3.6).

Recall From Chapter 4 that a normal fan of a 2-dimensional convex polytope in R2 is the

complete fan with apex at the origin, and 1-dimensional cones directed by the outward normal
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vectors of the 1-faces of this polytope. Recall that w0, w1 and w2 do not belong to a line and

denote by ∆ the triangle with vertices w0, w1 and w2. Let E ⊂ R2 denote the normal fan of ∆.

The triangle ∆ together with E are represented in Figure 6.3 on the left. The 1-dimensional cones

of E are L0 = {λ(0,−m1)| λ ≥ 0}, L1 = {λ(n2,m1 −m2)| λ ≥ 0} and L2 = {λ(−n2,m2)| λ ≥ 0}.
Let C0 (resp. C1, C2) denote the 2-dimensional cone generated by the two vectors (0,−m1) and

(−n2,m2) (resp. (0,−m1) and (n2,m1 −m2), (n2,m1 −m2) and (−n2,m2)), see Figure 6.3. In

what follows, for i = 0, 1, 2, let
◦
Ci denote the relative interior of Ci and

◦
Li denote the relative

interior of Li. The main result of this Section is the following one.

Theorem 6.15. For i = 0, 1, 2, the set
◦
Ci cannot contain more than one tropical transversal

intersection point of (6.3.6). Moreover, a 1-cone of E does not contain a transversal intersection

point of T1 and T2. Finally, if T1 and T2 intersect non-transversally at a cell ξ, then ξ is contained

in a 1-cone of the base fan E.

The proof of the first statement of this result is Corollary 6.23, and the proof of its second

statement is Corollary 6.25. The last statement of Theorem 6.15 is proved by Lemma 6.26.

Figure 6.3: To the left: the base fan E . To the right: a generic base fan.

Remark 6.16. The 1-skeleton of the fan E is the tropical curve associated to d0y
w0+d1y

w1+d2y
w2 ,

for any d0, d1, d2 ∈ K with zero valuation.

Definition 6.17. Let C ⊂ R2 be a fan with 1-cones J0, J1, . . . , JN and T ⊂ R2 be a tropical curve.

We say that C is a base fan of T if for every vertex v of T , there exists a 1-cone Ji of C and a

1-face F of T adjacent to v such that F ⊂ Ji.

It is easy to check that if T has a base fan C, then all of its vertices are located either on the

1-cones, or on the origin of C (see Figure 6.3 on the right for example). For obvious reasons, all

results in this section on T1 hold also true for the tropical curve T2 associated to the polynomial

appearing in the second equation of (6.3.6). Therefore, we state them only for T1.

Lemma 6.18. The fan E is a base fan of T1.

Proof. If α = 0, then the result is immediate since the only vertex of T1 is the center (0, 0)

of E . Assume that α 6= 0. Then, since (6.3.6) is highly non-degenerate, the subdivision τ1 is a

triangulation such that any triangle of τ1 has at least two vertices in {w0, w1, w2}. Assume without

loss of generality that one such triangle is [w0, w1, w3]. Therefore the edge F0,1 dual to [w0, w1] is

adjacent to the vertex v1 of T1, dual to [w0, w1, w3] ⊂ τ1. Note that

F0,1 = {x ∈ R2| 〈x,w0〉 = 〈x,w1〉 ≥ max(〈x,w2〉, 〈x,w3〉 − α)}. (6.3.7)
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It is clear that F0,1 is contained in the line which contains the 1-cone L0. We prove that F0,1 ⊂ L0

(see Fig. 6.4).

Figure 6.4: The edge F0,1 is contained in L0.

Assume that F0,1 does not belong to L0, we prove that this gives a contradiction. Consider a

point p ∈ F0,1 \ L0. Therefore p is in
◦
C2. By Remark 6.16, we have 〈p, w2〉 > max{〈p, w1〉, 〈p, w0〉}

which is a contradiction to (6.3.7).

Corollary 6.19. Any vertex v 6= (0, 0) of T1 contained in Li for some i ∈ {0, 1, 2}, is 3-valent.

Moreover, each 2-cone of E adjacent to Li contains one edge of T1 adjacent to v.

Proof. Note that if T1 has a vertex v 6= (0, 0), then α 6= 0, and thus the 3-valency comes from the

fact that τ1 is a triangulation. Since E is a base fan of T1, the second part of the corollary is a

consequence of the balancing condition applied to v.

Lemma 6.20. Assume that T1 has two vertices vi, vj 6= (0, 0) contained in distinct 1-cones Li and

Lj of E, respectively. Then there exists an edge of T1 that is adjacent to both vi and vj.

Proof. Since both vi and vj are 3-valent vertices of T1 (Corollary 6.19), their respective dual faces

σi and σj are both triangles. The subdivision τ1 cannot have more than three triangles since the

support of the first equation of (6.3.6) has only four elements. Moreover, since ∆1 is convex, any

two triangles of τ1 have one edge in common. Let δi,j denote the common edge of σi and σj . We

have that the vertices vi and vj are joined by an edge of T1, dual to δi,j .

Lemma 6.21. T1 cannot have more than one vertex on any 1-cone of E.

Proof. Consider a vertex v 6= (0, 0) of T1 that belong to a 1-cone, say L0. By Lemma 6.18, the

vertex v is an endpoint of an edge F0,1 ⊂ L0 of T1. Consequently

v ∈ {x ∈ R2| 〈x,w0〉 = 〈x,w1〉 ≥ max(〈x,w3〉 − α, 〈x,w2〉)}.

Note that for any x in L0, we have 〈x,w0〉 > 〈x,w2〉. Moreover, by Corollary 6.19, v is 3-valent,

thus v is the unique point point x ∈ R2 such that 〈x,w0〉 = 〈x,w1〉 = 〈x,w3〉 − α > 〈x,w2〉.

Lemma 6.22. For i = 0, 1, 2, the set
◦
Ci cannot contain more than one edge of T1.

Proof. This is a consequence of Corollary 6.19, Lemma 6.20 and Lemma 6.21.
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Since Lemma 6.22 also applies on T2, we have the following result.

Corollary 6.23. A 2-cone of E contains at most one transversal intersection of T1 and T2.

This proves the first statement of Theorem 6.15. To prove its second statement, we need the

following Lemma.

Lemma 6.24. If there exists an edge F of T1 not contained in any 1-cone of E and intersecting

one of these 1-cones in a point v, then v is an endpoint of F .

Proof. Assume without loss of generality that F ∩ L0 6= ∅ and consider a point v ∈ F ∩ L0. Since

F is not contained in any 1-cone of E , the relative interior of F is expressed as

{x ∈ R2 | 〈x,wi〉 = 〈x,w3〉 − α > max(〈x,wj〉, 〈x,wk〉)},

for distinct i, j, k ∈ {0, 1, 2}. Moreover, since v ∈ L0, we have

v ∈ {x ∈ R2 | 〈v, w0〉 = 〈v, w1〉},

which means that v is not contained in the relative interior of F , and thus it is an endpoint of

F .

Corollary 6.25. A 1-cone of E does not contain a transversal intersection point of T1 and T2.

Proof. A transversal intersection point p of T1 and T2 is the intersection of the relative interior of

an edge F1 ⊂ T1 and the relative interior of an edge F2 ⊂ T2. Lemma 6.24 shows that if there

exists a point of L0 belonging to the relative interiors of both F1 and F2, then both F1 and F2 are

contained in L0, which is impossible if the intersection is transversal.

This finishes the proof of the second statement of Theorem 6.15. The following result finishes

the proof of Theorem 6.15.

Recall that (6.4.1) is highly non-degenerate.

Lemma 6.26. If T1 and T2 intersect non-transversally at a cell ξ, then ξ is contained in a 1-cone

of the base fan E.

Proof. Assume that T1 and T2 intersect non-transversally at a cell ξ belonging to the relative

interior of a 2-cone of E , say of C0, we prove that this gives a contradiction. We have that ξ is

of type (I). Indeed, since E is a base fan of T1 and of T2, all vertices of the the latter tropical

curves belong to the 1-cones of E , and thus ξ cannot be of type (II), nor can it be of type (III).

Therefore, ξ (which is of type (I)) is the intersection of the 1-dimensional cell F0,3 ⊂ T1, dual

to [(0, 0), (m3, n3)] and the 1-dimensional cell F0,4 ⊂ T2, dual to [(0, 0), (m4, n4)]. It follows that

the points (0, 0), (m3, n3) and (m4, n4) belong to the same line, and thus (6.4.1) is not highly

non-degenerate, a contradiction.

Recall that we have a1 = b1 = 1.

Proposition 6.27. Assume that T1 and T2 intersect transversally at a point v ∈
◦
Ci, i ∈ {0, 1, 2}.

Then coef(ai) coef(a3) < 0, coef(bi) coef(b4) < 0 iff v is the valuation of a positive solution

of (6.3.6).
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The proof of Proposition 6.27 follows from the next two Lemmas.

Figure 6.5: Disposition of T1 with respect to its base fan E (together with its dual trian-
gulation τ1).

Lemma 6.28. Let v ∈
◦
Ci denote a transversal intersection point of T1 and T2. Then

〈v, wi〉 = 〈v, w3〉 − α = 〈v, w4〉 − β > max(〈v, wj〉, 〈v, wk〉},
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satisfying that wi, wj and wk are distinct points of {w0, w1, w2}.

Proof. Assume without loss of generality that v ∈
◦
C0, then 〈v, w0〉 > max(〈v, w1〉, 〈v, w2〉). The

proof comes directly from the fact that v belongs to the relative interior of an edge F1 (resp.

F2) of T1 (resp. T2) defined by {x ∈ R2| 〈x,w0〉 = 〈x,w3〉 − α > max(〈x,w1〉 , 〈x,w2〉}(
resp. {x ∈ R2| 〈x,w0〉 = 〈x,w4〉 − β > max(〈x,w1〉, 〈x,w2〉}

)
.

Lemma 6.29. Assume that T1 and T2 intersect transversally at v ∈
◦
Ci, i ∈ {0, 1, 2}. Then the

reduced system of (6.3.6) with respect to v is

coef(ai)y
wi + coef(a3)yw3 = coef(bi)y

wi + coef(b4)yw4 = 0

Proof. Assume without loss of generality that v := (v1, v2) ∈ C0. Therefore, replacing (y1, y2) by

(t−v1y1, t
−v2y2) in (6.3.1), we obtain

a0t
−〈v,w0〉yw0 + t−〈v,w1〉yw1 + a2t

−〈v,w2〉yw2 + a3t
α−〈v,w3〉yw3 = 0,

b0t
−〈v,w0〉yw0 + t−〈v,w1〉yw1 + b2t

−〈v,w2〉yw2 + b4t
β−〈v,w4〉yw4 = 0.

(6.3.8)

Using Lemma 6.28, the latter system can be expressed as

t−〈v,w0〉
(
a0y

w0 + t〈v,w0〉−〈v,w1〉yw1 + a2t
〈v,w0〉−〈v,w2〉yw2 + a3y

w3
)

= 0,

t−〈v,w0〉
(
b0y

w0 + t〈v,w0〉−〈v,w1〉yw1 + b2t
〈v,w0〉−〈v,w2〉yw2 + b4y

w4
)

= 0
(6.3.9)

where each of 〈v, w0〉−〈v, w1〉 and 〈v, w0〉−〈v, w2〉 are positive. Therefore, for t > 0 small enough,

the system (6.3.9) becomes

coef(a0)yw0 + coef(a3)yw3 = coef(b0)yw0 + coef(b4)yw4 = 0.

6.4 Preliminary case-by-case analysis for n = k = 2

Recall that a system of type n = k = 2 is said to be highly non-degenerate if no three points of its

support belong to a line. Furthermore, recall that a normalized system is of the form

a0 + ym1
1 + a2y

m2
1 yn2

2 + a3t
αym3

1 yn3
2 = 0,

b0 + ym1
1 + b2y

m2
1 yn2

2 + b4t
βym4

1 yn4
2 = 0.

(6.4.1)

satisfying that all ai and bj are in RK∗ and verify ord(ai) = ord(bj) = 0, all wi are in Z2, both

m1, n2 are positive and both α, β are real numbers.

Consider a highly non-degenerate, normalized system (6.4.1).

Lemma 6.30. Assume that the system (6.4.1), satisfies one of the following: coef(a0) = coef(b0),

coef(a2) = coef(b2) or coef(a0)/ coef(a2) 6= coef(b0)/ coef(b2). Then, one can associate to (6.4.1)

a highly non-degenerate normalized system

c0 + zm̂1
1 + c2z

m̂2
1 zn̂2

2 + c3t
γzm̂3

1 zn̂3
2 = 0,

d0 + zm̂1
1 + d2z

m̂2
1 zn̂2

2 + d4t
δzm̂4

1 zn̂4
2 = 0

(6.4.2)

with equations in RK[z±1
1 , z±1

2 ] that has the same number of non-degenerate positive solutions

as (6.4.1), where coef(ci) = coef(di) for i = 0, 2.
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Proof. First, the result becomes trivial if (6.4.1) satisfies at least two of the equalities of the Lemma.

Indeed, then the three equalities will hold automatically and thus it suffices to consider (6.4.1) itself,

and thus proving the result. Therefore, we assume that only one of the mentioned equalities holds

true.

• Assume that coef(a0) = coef(b0). The system

ã0t
α0 + (b2 − a2)ym2

1 yn2
2 − a3t

αym3
1 yn3

2 + b4t
βym4

1 yn4
2 = 0,

coef(a0)
(
ã1t

α1ym1
1 + b̃2y

m2
1 yn2

2 − ã3t
αym3

1 yn3
2 + b̃4t

βym4
1 yn4

2

)
= 0,

(6.4.3)

has the same number of non-degenerate positive solutions of (6.4.1). Indeed, the first equation

of (6.4.3) is obtained by subtracting the first equation of (6.4.1) from its second one, whereas the

second equation of (6.4.3) is obtained by multiplying the second equation of (6.4.1) by coef(a0)/b0
and subtracting from it the first equation of (6.4.1) multiplied by coef(a0)/a0. Note that ã1t

α1 =

b−1
0 −a

−1
0 , ã3 = (a3/a0), b̃2 = (b2/b0−a2/a0), b̃4 = (b4/b0), ã0t

α0 = b0−a0, ord(ãi) = ord(b̃j) = 0,

αi > 0 for i = 0, 1. Moreover, since coef(a0) = coef(b0), we have

coef

(
coef(a0)a3

a0

)
= coef(a3), coef

(
coef(a0)b4

b0

)
= coef(b4)

and

coef

(
coef(a0)

(
b2
b0
− a2

a0

))
= coef(b2 − a2).

Since we are only interested in positive solutions of (6.4.3), dividing the first and the second

equation of (6.4.3) by −a3y
m2
1 yn2

2 and −(coef(a0)a3/a0)ym2
1 yn2

2 respectively will not change the

number of non-degenerate positive solutions of (6.4.3). Moreover, this number of non-degenerate

positive solutions will not change if we replace (y1, y2) by (tky1, t
ly2) in (6.4.3) for some real

numbers k and l satisfying 〈(k, l), (m3 −m2, n3 − n2)〉 − α = 〈(k, l), (m4 −m2, n4 − n2)〉 − β = 0.

The system we obtain is

c3t
γy−m2

1 y−n2
2 + c0 + ym3−m2

1 yn3−n2
2 + c2y

m4−m2
1 yn4−n2

2 = 0,

d4t
δym1−m2

1 y−n2
2 + d0 + ym3−m2

1 yn3−n2
2 + d2y

m4−m2
1 yn4−n2

2 = 0,
(6.4.4)

with

c0 = −b2 − a2

a3
, c2 = − b4

a3
, c3 = − ã0

a3
, d0 = −a0

a3

(
b2
b0
− a2

a0

)
, d2 = −b4a0

a3b0
,

d4 = −a0

a3
, γ = α0 + 〈(−m2,−n2), (k, l)〉 and δ = α1 + 〈(m1 −m2,−n2), (k, l)〉.

From coef(a0) = coef(b0) and

coef

(
coef(a0)

(
b2
b0
− a2

a0

))
= coef(b2 − a2),

we have coef(c2) = coef(d2) and coef(c0) = coef(d0). Moreover, all ord(ci) and ord(b̂j) are zero.

We make the monomial change of coordinates (y1, y2) 7→ (z1, z2) of (RK∗)2 such that

ym3−m2
1 yn3−n2

2 = zm̂1
1 and ym4−m2

1 yn4−n2
2 = zm̂2

1 zn̂2
2 , where both m̂1 and n̂2 are integers. Finally,

replacing z1 (resp. z2) by z−1
1 (resp. z−1

2 ) if necessary (since the solutions that we are interested
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in are non-zero), we have m̂1, n̂2 > 0, and thus we obtain a highly non-degenerate normalized

system (6.4.2) satisfying the conditions of the Lemma.

• Assume that coef(a0)
coef(a2) = coef(b0)

coef(b2) . Dividing the first (resp. second) equation of (6.4.1) by a2 (resp.

b2), and making the monomial change of coordinates (y1, y2) 7→ (z1, z2) such that zm̃1
1 = ym2

1 yn2
2

and zm̃2
1 zñ2

2 = ym1
1 . Thus we obtain the highly non-degenerate system

a0/a2 + zm̃1
1 + (1/a2)zm̃2

1 zñ2
2 + (a3/a2)tαzm̃3

1 zñ3
2 = 0,

b0/b2 + zm̃1
1 + (1/b2)zm̃2

1 zñ2
2 + (b4/b2)tβzm̃4

1 zñ4
2 = 0.

(6.4.5)

Since we are interested in non-zero solutions, replacing z1, z2 by z−1
1 , z−1

2 if necessary, we assume

that both m̃1 and ñ2 are positive. Therefore, the system (6.4.5) is a normalized system with

coef(a0/a2) = coef(b0/b2) and coef(1/a2) 6= coef(1/b2). Note that such a change of coordinates

does not change the number of non-degenerate positive solutions. Applying the proof of the case

of coef(a0) = coef(b0) to (6.4.5) gives the result.

• Assume that coef(a2) = coef(b2). Similarly to the case where
coef(a0)

coef(a2)
=

coef(b0)

coef(b2)
, we make

coordinate changes and monomial divisions on (6.4.1) to reduce to the already proven case where

coef(a0) = coef(b0).

Lemma 6.31. Assume that the coefficients of the system (6.4.1) satisfy coef(ai) 6= coef(bi) for

i = 0, 2, coef(a0)/ coef(a2) 6= coef(b0)/ coef(b2) and αβ = 0. Then one can associate to (6.4.1) a

highly non-degenerate normalized system

c0 + zm̃1
1 + c2z

m̃2
1 zñ2

2 + c3t
γzm̃3

1 zñ3
2 = 0,

d0 + zm̃1
1 + d2z

m̃2
1 zñ2

2 + d4t
δzm̃4

1 zñ4
2 = 0

(6.4.6)

with equations in RK[z±1
1 , z±1

2 ] that has the same number of non-degenerate positive solutions

as (6.4.1), where coef(ci) 6= coef(di) for i = 0, 2,

coef(c0)/ coef(c2) 6= coef(d0)/ coef(d2) and γδ 6= 0.

Proof. Assume the hypotheses of the Lemma on (6.4.1), and assume without loss of generality that

only α is equal to zero. Replace (y1, y2) by (tky1, t
ly2) in (6.4.1) so that 〈(k, l), (m2, n2)〉 = 0 and

〈(k, l), (m4, n4)〉 = −β. Since (6.4.1) is highly non-degenerate, we have 〈(k, l), (m1, 0)〉 = γ1 6= 0

and 〈(k, l), (m3, n3)〉 = γ3 6= 0. The system

b0/b4 + ym4
1 yn4

2 + (b2/b4)ym2
1 yn2

2 + (1/b4)tγ1ym1
1 = 0,

(b0 − a0)/b4 + ym4
1 yn4

2 + ((b2 − a2)/b4)ym2
1 yn2

2 − (a3/b4)tγ3ym3
1 yn3

2 = 0

has the same number of non-degenerate positive solutions as (6.4.1). Indeed, the second equation

of the latter system is obtained by subtracting the first equation of (6.4.1) divided by b4 from

its second one also divided by b4. Doing a monomial change of variables (y1, y2) 7→ (z1, z2) so

that zm̃1
1 = ym4

1 yn4
2 and zm̃2

1 zñ2
2 = ym2

1 yn2
2 satisfying m̃1 > 0 and ñ2 > 0. The result comes from

deducing that b0/b2 6= (b0 − a0)/(b2 − a2).
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Remark 6.32. Thanks to Lemmata 6.30 and 6.31, we only need to consider the following two

cases.

(α, β) 6= (0, 0) and coef(ai) = coef(bi) for i = 0, 2 (6.4.7)

and

αβ 6= 0, coef(ai) 6= coef(bi) for i = 0, 2 and
coef(a0)

coef(a2)
6= coef(b0)

coef(b2)
. (6.4.8)

We start this Section (see Subsection 6.4.1), by writing explicitly approximation polynomials

of (6.4.1) for some cells of type (I). The remaining part is mainly devoted to explicitly writing

the reduced systems of (6.4.1) with respect to non-transversal intersection points of type (II) and

(III). We also give some key results that we will frequently refer to in the rest of this chapter.

Let ∆1 and ∆2 (resp. τ1 and τ2, T1 and T2) denote the Newton polytopes (resp. dual subdi-

visions, tropical curves) associated to the first and second equation of (6.4.1) respectively.

It will be useful for the computations in the following sections to write explicitly the coordinates

of vertices of each of T1 and T2. Recall that if T1 (resp. T2) has a vertex v1 (resp. v2) that belongs

to the relative interior of a 1-cone of E , then it is dual to the triangle ∆v1 ∈ τ1 (resp. ∆v2 ∈ τ2)

with vertices (mi, ni), (mj , nj) and (m3, n3) (resp. (m4, n4)) for distinct i, j ∈ {0, 1, 2}.
For obvious reasons, the following coordinates of the possible vertices of T1 also hold true for

the possible vertices of T2 by replacing (m3, n3) and α by (m4, n4) and β. Therefore, we state

them only for T1 and distinguish three cases.

- First case: v1 ∈ L0. The coordinates (x1, x2) of v1 satisfy 0 = m1x1 = m3x1 + n3x2 − α,

and thus (x1, x2) = (0, α/n3).

- Second case: v1 ∈ L1. The coordinates (x1, x2) of v1 satisfy m1x1 = m2x1 + n2x2 =

m3x1 + n3x2 − α, and thus

(x1, x2) =

(
n2α

(m3 −m1)n2 − (m2 −m1)n3
, − (m2 −m1)α

(m3 −m1)n2 − (m2 −m1)n3

)
.

- Third case: v1 ∈ L2. The coordinates (x1, x2) of v1 satisfy 0 = m2x1 + n2x2 = m3x1 +

n3x2 − α, and thus

(x1, x2) =

(
n2α

m3n2 −m2n3
, − m2α

m3n2 −m2n3

)
.

6.4.1 Approximation polynomials for type-(I) intersections

In this subsection, we assume that T1 and T2 intersect non-transversally at distinct cells Ei ⊂ Li
and Ej ⊂ Lj for i, j ∈ {0, 1, 2}, both of type (I), and that each of

◦
Ei and

◦
Ej contains the valuations

of non-degenerate positive solutions of (6.4.1). Then, we have the following result.

Lemma 6.33. If T1 and T2 intersect non-transversally at a cell Ek ⊂ Lk of type (I), different from

Ei and from Ej, then
◦
Ek does not contain the valuation of any non-degenerate positive solution

of (6.4.1).
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We may assume without loss of generality that i = 0 and j = 2, and thus k = 1.

Proof of Lemma 6.33. Assume that T1 and T2 intersect non-transversally at a cell E1 ⊂ L1 of type

(I). Since each of
◦
E0 and

◦
E2 contains the valuations of non-degenerate positive solutions of (6.4.1),

using same arguments as in the proof of Proposition 6.6, we have coef(a0) coef(a2) < 0 (resp.

coef(b0) coef(b2) < 0) and coef(a0) < 0 (resp. coef(b0) < 0). Therefore coef(a2) > 0 and coef(b2) >

0, and consequently, the reduced system ym1
1 + coef(a2)ym2

1 yn2
2 = ym1

1 + coef(b2)ym2
1 yn2

2 = 0,

associated to E1, does not have positive solutions.

We want to find an approximation polynomial for each of E0 and E2. Consider the following

polynomials

f0,t = coef(c0)tγ0 + coef(c2)tγ2yn2 − coef(a3)tαyn3 + coef(b4)tβyn4 (6.4.9)

and

f2,t = ctδ − coef(a3)tαy
m3n2−m2n3

n2 + coef(b4)tβy
m4n2−m2n4

n2 , (6.4.10)

with ci = bi − ai, γi = ord(ci) for i = 0, 2 and ctδ is the first-order term of c2 − c0.

Lemma 6.34. The polynomials f0,t and f2,t are approximation polynomials of (6.4.1) for E0 and

E2 respectively.

Proof. Since
◦
E0 and

◦
E2 both contain valuations of non-degenerate positive solutions of (6.4.1),

using arguments similar to those appearing in the proof of Proposition 6.6, we may assume without

loss of generality that coef(a0) = coef(b0) = −1 and coef(a2) = coef(b2) = 1.

The system (6.4.1) already satisfies all properties of Proposition 6.6, in particular, the cell
◦
E0 ⊂ L0 is contained in {0}× ]−∞, 0[. Therefore, the fact that f0,t is an approximation polynomial

of (6.4.1) for E0 is straightforward.

A non-degenerate positive solution (ν, %) ∈ (RK∗)2 of (6.4.1) with valuation in
◦
E2 satisfies

coef(ν)m2 coef(%)n2 − 1 = 0. Indeed, ym2
1 yn2

2 − 1 = 0 is the reduced system associated to E2.

Therefore, νm2%n2 = 1 + µ with µ ∈ RK and ord(µ) > 0, thus % = ν−
m2
n2 (1 + µ)

1
n2 . We have that

the system

a0 + zm1
2 + a2z1 + a3t

αz
m3
n2

1 z
m3n2−m2n3

n2
2 = 0,

b0 + zm1
2 + b2z1 + b4t

βz
m4
n2

1 z
m4n2−m2n4

n2
2 = 0,

(6.4.11)

obtained via the monomial change of coordinates (y1, y2) → (z1, z2) defined by z1 = ym2
1 yn2

2 and

z2 = y1, has the same number of non-degenerate solutions in (RK∗)2 as (6.4.1). We now prove

that (6.4.11) satisfies all the properties of Proposition 6.6. Similarly to the proof of Proposition 6.6,

we deduce from the latter change of coordinates that the tropical curves of the system (6.4.11)

intersect non-transversally at a cell Ẽ2 of type (I). Moreover, the systems (6.4.11) and (6.4.1) have

the same number of non-degenerate positive solutions with valuations in
◦

Ẽ2 and
◦
E2 respectively.

This proves that (6.4.11) satisfies property ii) of Proposition 6.6.

We have that (x1, x2) belongs to
◦

Ẽ2 if and only if it satisfies

0 = x1 > max{m1x2 ,−α+m4x1/n2 + (m4n2 −m2n4)x2/n2}

and

0 = x1 > max{m1x2 ,−α+m3x1/n2 + (m3n2 −m2n3)x2/n2}.
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Therefore, since m1 > 0 and m1x2 < 0 for (x1, x2) ∈
◦

Ẽ2, we have
◦

Ẽ2 ⊂ {0}× ]−∞, 0[. Moreover,

from coef(a0) = coef(b0) = −1 and coef(a2) = coef(b2) = 1, we deduce that (6.4.11) satisfies

property i) of Proposition 6.6. Therefore f2,t is an approximation polynomial of (6.4.1) for Ẽ2.

In Sections 6.6, 6.7 and 6.5, we use f0,t and f2,t of (6.4.9) and (6.4.10) respectively, to compute

the non-degenerate positive solutions of (6.4.1) with valuations in
◦
E0 and

◦
E2 respectively.

Remark 6.35. By Descartes’ rule of sign applied to f0,t (resp. f2,t), the cell
◦
E0 (resp.

◦
E2)

contains the valuations of at most three (resp. two) positive solutions of (6.4.1).

In what follows, we denote by Γ0 and Γ2 the lower hulls associated to f0,t and f2,t respectively

(see Figure 6.20 for example).

Remark 6.36. If v is a vertex of Γ0, then v belongs to the set

{(0, γ0), (n2, γ2), (n3, α), (n4, β)} ⊂ R2.

Similarly, if v is a vertex of Γ2, then v belongs to the set

{(0, δ), (
m3n2 −m2n3

n2
, α), (

m4n2 −m2n4

n2
, β)}.

Definition 6.37. We say that Γ0 (resp. Γ2) is optimally sloped if it does not have edges with

positive slope and it contains all the points of the set {(0, γ0), (n2, γ2), (n3, α), (n4, β)} (resp.

{(0, δ), (m3n2−m2n3

n2
, α), (m4n2−m2n4

n2
, β)}).

Example 6.38. Consider the particular system (6.4.1)

−1 + t12 + x6 + x3y6 − tx10y12 = 0,

−1 + x6 + (1 + t5)x3y6 − t1.5x7y11 = 0.
(6.4.12)

The corresponding approximation polynomials (6.4.9) and (6.4.10) are f0,t(y) = −t12 + t5y6 −
t1.5y11 + ty12 and f2,t(y) = t5 + ty4− t1.5y 5

3 . Applying Corollary 6.12, we have that if (6.4.12) has

six positive solutions, then the first terms of the positive solutions of (6.4.12) with valuations in

the relative interior
◦
E0 of the cell E0 are

(
1, t

1
2

)
,
(

1, t
7
10

)
and

(
1, t

7
6

)
, and those with valuations

in
◦
E2 are

(
t

1
30 c1, t

− 1
60
√
c1

)
and

(
t

7
45 c2, t

− 7
90
√
c2

)
for some c1, c2 ∈ R∗.

The valuations of these solutions are represented in Figure 6.6. Note that this system (6.4.12)

has also a non-degenerate positive solution with valuation a transversal intersection point
(
− 4

11 ,
13
22

)
.

The system

−1 + t12 + x6 + x3y6 − tx10y12 = 0,

−t12 + t5x3y6 − t1.5x7y11 + tx10y12 = 0
(6.4.13)

has the same non-degenerate positive solutions as (6.4.12). Indeed, the second equation of (6.4.13)

is obtained by subtracting the second equation of (6.4.12) from its first one. The tropical curves

associated to (6.4.13) intersect transversally in six points (see Fig 6.7). This shows that, since in

this case the curves T1 and T2 intersect transversally, the bound six of Lemma 6.4 is sharp.
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Figure 6.6: Five solutions of (6.4.12) with valuations contained in cells of type (I).

Figure 6.7: Tropical curves of a system of type n = k = 2 intersect transversally at six
points.

6.4.2 Reduced systems for type-(II) intersections

We start with the following result.

Lemma 6.39. If T1 and T2 intersect non-transversally at a point v of type (II), then T1 and T2

intersect non-transversally at a cell of type (I) such that v is one of its endpoints.

Proof. Assume that T1 and T2 intersect non-transversally at a point v of type (II). Then by

Lemma 6.26, the point v belongs to one of the 1-cones of E , say L0. By definition, the point v is

the intersection of a vertex v1 of T1 and the relative interior of a facet F2 of T2. By Lemma 6.24,

we have F2 ⊂ L0. Since E is a base fan of T1, the latter tropical curve has a facet F1 ⊂ L0 adjacent

to v1, and thus F1 ∩ F2 is of type (I) and v is an endpoint of F1 ∩ F2.

Corollary 6.40. The reduced system with respect to a non-transversal intersection point of type

(II) is of the form

coef(ai)y
mi
1 yni2 + coef(aj)y

mj
1 y

nj
2 = coef(bi)y

mi
1 yni2 + coef(bj)y

mj
1 y

nj
2 + coef(b4)ym4

1 yn4
2 = 0
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or

coef(bi)y
mi
1 yni2 + coef(bj)y

mj
1 y

nj
2 = coef(ai)y

mi
1 yni2 + coef(aj)y

mj
1 y

nj
2 + coef(a3)ym3

1 yn3
2 = 0,

for some distinct i, j ∈ {0, 1, 2}.

Remark 6.41. Each system appearing in Corollary 6.40 is composed of two equations in two vari-

ables and having a total of three distinct monomials. Therefore, the reduced system with valuation

a non-transversal intersection point of type (II) has at most one positive solution.

6.4.3 Reduced systems for type-(III) intersections at the origin

The tropical curves T1 and T2 intersect non-transversally at a point v0 of type (III) that is the

origin of E if and only if α, β ≥ 0. In this Subsection, we assume 0 ≤ α ≤ β and (α, β) 6= (0, 0).

The system

a0 + ym1
1 + a2y

m2
1 yn2

2 + a3t
αym3

1 yn3
2 = 0,

c0t
γ0 + c2t

γ2ym2
1 yn2

2 − a3t
αym3

1 yn3
2 + b4t

βym4
1 yn4

2 = 0,
(6.4.14)

with cit
γi = bi − ai, ord(ci) = 0 and γi ≥ 0 for i = 0, 2, has the same number of non-degenerate

positive solutions as (6.4.1). Indeed, the second equation of (6.4.14) is obtained by substracting

the first equation of (6.4.1) from its second one.

If coef(ai) 6= coef(bi) for i = 0, 2, and αβ 6= 0, then γ0 = γ2 = 0 and the reduced system

coef(a0) + ym1
1 + coef(a2)ym2

1 yn2
2 = coef(c0) + coef(c2)ym2

1 yn2
2 = 0

with respect to v0 has at most one positive solution (the case of a simplex).

Assume now that coef(ai) = coef(bi) for i = 1, 2. Then γ0, γ2 > 0, and we distinguish the

following cases.

i) First case: there exists only one element of the set {α, β, γ0, γ2} that is equal to min(α, β, γ0, γ2).

The reduced system of (6.4.14) with respect to v0 has no positive solutions.

ii) Second case: γ0 = γ2 < min(α, β). Then the reduced system of (6.4.14) with respect to v0

becomes

coef(a0) + yw1
1 + coef(a2)ym2

1 yn2
2 = coef(c0) + coef(c2)ym2

1 yn2
2 = 0. (6.4.15)

Such a system has at most one positive solution. Indeed, since this is the case where the

support is a simplex.

iii) Third case: α = γ0 ≤ β < γ2 (the case where α = γ2 ≤ β < γ0 is similar).

a) Assume first that α = γ0 < min(β, γ2), then the reduced system of (6.4.14) with

respect to v0 becomes

coef(a0) + ym1
1 + coef(a2)ym2

1 yn2
2 = coef(c0)− coef(a3)ym3

1 yn3
2 = 0. (6.4.16)



6.4. Preliminary case-by-case analysis for n = k = 2 108

Such a system has at most two positive solutions. Indeed, since this can be reduced to

an equation in one variable with at most three monomials.

b) Assume now that α = γ0 = β < γ2. Then the reduced system of (6.4.14) with respect

to v0 becomes

coef(a0) + ym1
1 + coef(a2)ym2

1 yn2
2 = coef(c0)− coef(a3)ym3

1 yn3
2 + coef(b4)ym4

1 yn4
2 = 0.

(6.4.17)

Such a system has at most five positive solutions. Indeed, since this is a system of two

trinomials in two variables (see [LRW03]).

iv) Fourth case: α = γ0 = γ2 ≤ β.

a) Assume first that α = γ0 = γ2 < β. Then the reduced system of (6.4.14) with respect

to v0 becomes

coef(a0) + coef(a2)ym2
1 yn2

2 + ym1
1 = 0,

coef(c0) + coef(c2)ym2
1 yn2

2 − coef(a3)ym3
1 yn3

2 = 0.
(6.4.18)

Such a system has at most three positive solutions. Indeed, since this is the case where

the support is a circuit.

b) Assume now that α = β = γ0 = γ2, then the reduced system of (6.4.14) with respect

to v0 becomes

coef(a0) + coef(a2)ym2
1 yn2

2 + ym1
1 = 0,

coef(c0) + coef(c2)ym2
1 yn2

2 − coef(a3)ym3
1 yn3

2 + coef(b4)ym4
1 yn4

2 = 0.
(6.4.19)

Such a system has at most eight real positive solutions if coef(a0)/ coef(a2) 6= coef(c0)/ coef(c2)

(see Proposition 6.53).

If coef(a0)/ coef(a2) = coef(c0)/ coef(c2), then (6.4.19) has at most five positive solu-

tions (again, see Proposition 6.53).

v) Fifth case: α = β < min(γ0, γ2). The reduced system of (6.4.14) with respect to v0 becomes

coef(a0) + ym1
1 + coef(a2)ym2

1 yn2
2 = − coef(a3)ym3

1 yn3
2 + coef(b4)ym4

1 yn4
2 = 0 (6.4.20)

which has at most two real positive solutions (same argument as in the case iii) b)).

6.4.4 Type-(III) intersections outside the origin

Let v0 denote the origin of E . Lemma 6.26 shows that if T1 and T2 intersect non-transversally at

a point v of type (III) such that v 6= v0, then v belongs to the relative interior of a 1-cone of E . In
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this Subsection, we write explicitly the reduced system of (6.4.1) with respect to v when v ∈ L0

or v ∈ L1. We explain in Section 6.6 why we omit the study of the reduced system of (6.4.1) with

respect to v if it belongs to L2. Moreover, we state Lemmata that give constraints on the tropical

curves intersecting at a type-(III) point.

• Assume that v ∈ L1. Then the reduced system with respect to v becomes

ym1
1 + coef(a2)ym2

1 yn2
2 + coef(a3)ym3

1 yn3
2 = ym1

1 + coef(b2)ym2
1 yn2

2 + coef(b4)ym4
1 yn4

2 = 0. (6.4.21)

Note that if coef(a2) = coef(b2) and (6.4.21) has a positive solution (α, β) ∈ (R∗)2, then α is a

solution of

ym1
1 + d2y

m2(n3−n4)+n2(m4−m3)
n3−n4

1 + d3y
n3m4−m3n4

n3−n4
1 = 0, (6.4.22)

and (α, β) satisfy

β =

(
coef(b4)

coef(a3)

)1/(n3−n4)

α
m4−m3
n3−n4 , (6.4.23)

with

d2 = coef(a2)

(
coef(b4)

coef(a3)

)n2/(n3−n4)

and d3 = coef(a3)

(
coef(b4)

coef(a3)

)n3/(n3−n4)

.

• Assume now that v belongs to L0. Then the reduced system with respect to v becomes

coef(a0) + ym1
1 + coef(a3)ym3

1 yn3
2 = coef(b0) + ym1

1 + coef(b4)ym4
1 yn4

2 = 0. (6.4.24)

Similarly, if coef(a0) = coef(b0) and (6.4.24) has a positive solution (α, β) ∈ (R∗)2, then α is a

solution of

coef(a0) + ym1
1 + d3y

n3m4−m3n4
n3−n4

1 = 0. (6.4.25)

and (α, β) satisfy (6.4.23).

Remark 6.42. Both (6.4.21) and (6.4.24) have four monomials in their support, thus each of

them has at most three positive solutions. On the other hand, following Descartes’ rule of signs,

each of (6.4.22) and (6.4.25) has at most two positive solutions.

The following Lemmata will be useful in the next Sections. Recall that we assumed that (6.4.1)

is highly non-degenerate.

Lemma 6.43. The tropical curves T1 and T2 have at most one intersection point of type (III),

different from the origin.

Proof. Assume without loss of generality that T1 and T2 intersect at two points v1 and v2 of type

(III) such that v1 ∈ L1 and v2 ∈ L2. Lemma 6.20 shows that, since both v1 and v2 are vertices

of T1 and T2, the tropical curve T1 (resp. T2) has an edge F2,3 (resp. F2,4) adjacent to both v1

and v2. Therefore, we have F2,3 = F2,4, and thus it is a non-transversal intersection of type (I) in

C2. This implies that the segments [w2, w3] ∈ τ1 and [w2, w4] ∈ τ2 are parallel, which contradicts

that (6.4.1) is highly non-degenerate. (see Figure 6.8).
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Figure 6.8: An example showing that if T1 and T2 intersect non-transversally at two points
of type (III), then the system (6.4.1) is not highly non-degenerate.

Lemma 6.44. Assume that T1 and T2 intersect non-transversally at a point v 6= v0 of type (III).

Then T1 and T2 intersect transversally in at most one point. Moreover, if this is the case, then

this transversal intersection point is not contained in a 2-cone of E adjacent to v (see Figure 6.9).

Figure 6.9: The tropical curves T1 and T2 intersect transversally at only one point belong-
ing to C2.

Proof. Assume that T1 and T2 intersect at a point v ∈
◦
L0 of type (III). Since v is a common vertex

of T1 and T2, applying Corollary 6.19 and Lemma 6.22 to T1 and T2, we get that C0 and C1 do

not contain transversal intersection points of T1 and T2. Moreover, Theorem 6.15 shows that C2

contains at most one transversal intersection.

6.5 Proof of Theorem 6.1

In all what follows, we assume that (α, β) 6= (0, 0), and consider the highly non-degenerate nor-

malized system

a0 + ym1
1 + a2y

m2
1 yn2

2 + a3t
αym3

1 yn3
2 = 0,

b0 + ym1
1 + b2y

m2
1 yn2

2 + b4t
βym4

1 yn4
2 = 0.

(6.5.1)
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satisfying that all ai and bj are in RK∗ and verify ord(ai) = ord(bj) = 0, all wi are in Z2, both

m1, n2 are positive and both α, β are real numbers.

Recall that since E is a base fan of (6.5.1), then the possible intersection components of

the tropical curves T1 and T2, associated to the first and second equations respectively, are the

following.

1. The set of transversal intersection points, denote it by T.

2. A set of at most three non-transversal intersections of type (I), satisfying that for i ∈ {0, 1, 2},
a 1-cone

◦
Li of E contains at most one type-(I) intersection, denoted it by Ei.

3. The set of non-transversal intersection points of type (II) , denote it by N2.

4. The origin of the base fan E , denote it by v0.

5. A non-transversal intersection point of type (III), outside the origin of E , denote it by v.

There can be at most one of such type since (6.5.1) is highly non-degenerate.

We have the following two results.

Lemma 6.45. The (possibly empty) set {v} ∪ T contains the valuations of at most four non-

degenerate positive solutions of (6.5.1).

Proof. If T1 and T2 do not intersect non-transversally at a point v of type (III) outside the origin

of E , then Theorem 6.15 shows that (6.5.1) has at most three non-degenerate positive solutions

with valuation in T. Otherwise, the result comes from Remark 6.42 and Lemma 6.44.

Proposition 6.46. If α 6= β or α = β < 0, then the set
◦
E0 ∪

◦
E1 ∪

◦
E2 ∪N2 ∪ {v0} contains the

valuations of at most five positive solutions of (6.5.1).

Proof. Assume that α 6= β or α = β < 0.

• Assume first that coef(ai) = coef(bi) for i = 0, 2. Then, a consequence of Corollary 6.40 gives

that any intersection point of type (II) is not a valuation of a non-degenerate positive solution

of (6.5.1). Moreover, since we do not have α = β > 0, then the origin v0 of E is the valuation

of at most three non-degenerate positive solutions. Indeed, this comes from the analysis done

in Subsection 6.4.3, where the possible case that gives the biggest sharp bound is iv) a) with

0 < α = γ0 = γ2 < β. If (6.5.1) does not have non-degenerate positive solutions with valuations

in the relative interior of an intersection cell of type (I), then {v0} is the only element of the set
◦
E0∪

◦
E1∪

◦
E2∪N2∪{v0} that contains the valuations of non-degenerate positive solutions of (6.5.1),

and we are done.

Assume that (6.5.1) has non-degenerate positive solutions with valuations contained in the

relative interiors of intersection cells of type (I). Then Lemma 6.33 shows that the relative interior

of at least one intersection cell of type (I), say E1 ⊂ L1, does not contain valuations of non-

degenerate positive solutions of (6.5.1). Similarly as in Subsection 6.4.3, we study here four cases

with respect to the values of α, β, γ0 and γ2. Recall that f0,t and f2,t in (6.4.9) and (6.4.10)

respectively are approximation polynomials of (6.5.1) for E0 and E2 respectively, and that f0,t and

f2,t have at most three and two non-degenerate positive roots respectively. We keep the notations

for Γ0 and Γ2 as the lower hulls of the Newton polytopes of the Viro approximation polynomials

f0,t and f2,t respectively. We apply Corollary 6.12 by counting in each case the number of edges
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of Γ0 and Γ2 with negative slope. We will deduce after each of the following cases that the set
◦
E0 ∪

◦
E2 ∪ {v0} contains the valuations of at most five non-degenerate positive solutions of (6.6.2),

and thus the same goes for
◦
E0 ∪

◦
E1 ∪

◦
E2 ∪N2 ∪ {v0}.

i) First case: there exists only one element of the set {α, β, γ0, γ2} that is equal to min(α, β, γ0, γ2).

Then (6.5.1) does not have non-degenerate positive solutions with valuation v0 (since in any

case, the second equation of (6.4.14) has only one monomial). Therefore, the lower hulls Γ0

and Γ2 has at most three (resp. two) edges with negative slope, and thus the set
◦
E0 ∪

◦
E2

contains the valuations of at most five non-degenerate positive solutions of (6.5.1).

ii) Second case: γ0 = γ2 < min(α, β). Then (6.5.1) has at most one non-degenerate positive

solution with valuation v0. Moreover, the relative interior
◦
E0 of E0 has at most two non-

degenerate positive solutions since the lower hull Γ0, associated to f0, has at most two edges

with negative slope. Therefore, the system (6.5.1) has at most four non-degenerate positive

solutions with valuation in
◦
E0 ∪

◦
E2.

iii) a) Third case: α = γ0 < min(β, γ2) (the case where α = γ2 < min(β, γ0) is similar).

Then (6.5.1) has at most two non-degenerate positive solution with valuations v0 (case

of a trinomial and a binomial). Moreover,
◦
E0 (resp.

◦
E2) has at most two (resp. one) non-

degenerate positive solutions since the lower hull Γ0 (resp. Γ2), associated to f0,t (resp.

f2,t), has at most two (resp. one) edges with negative slope. Therefore, the system (6.5.1)

has at most three non-degenerate positive solutions with valuation in
◦
E0 ∪

◦
E2.

iv) a) Fourth case: α = γ0 = γ2 < β. Then (6.5.1) has at most three non-degenerate positive

solution with valuation v0. Moreover, for i = 0, 2,
◦
Ei has at most one non-degenerate

positive solution of (6.4.1) since the lower hull Γi, associated to fi,t has at most one edge

with negative slope. Therefore, the system (6.5.1) has at most two non-degenerate positive

solutions with valuation in
◦
E0 ∪

◦
E2.

This finishes the proof for the case where coef(ai) = coef(bi) for i = 0, 2.

• Assume now that coef(a0)/ coef(b0) 6= coef(a2)/ coef(b2) and coef(ai) 6= coef(bi) for i = 0, 2 (see

Remark 6.32). Note that from the beginning of this section, we have αβ 6= 0. Then v0 is the

valuation of at most one non-degenerate positive solution of (6.5.1) (since the reduced system is

supported on a simplex). Moreover, the system (6.5.1) does not have any solutions with valuation

in any
◦
Ei for i ∈ {0, 1, 2}. Indeed, since from coef(a0) 6= coef(b0), the reduced system with respect

to
◦
E0 for example, is

coef(a0) + ym1
1 = coef(b0) + ym1

1 = 0

and thus has no solutions.

The tropical curves T1 and T2 intersect in at most five non-transversal intersection points of

type (II). Indeed, since T1 (resp. T2) has at most three vertices outside v0, and this happens only

when α (resp. β) is negative. Moreover, if α and β are both negative or positive, then T1 and T2

intersect in at most three points of type (II) (see Figure 6.10 for example).
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Figure 6.10: Possible restrictions for T1 and T2 with respect to α, β. From left to right:
α < 0 < β, α, β < 0 and α, β > 0.

Therefore, if T1 and T2 intersect at five points of type (II), then these two curves do not

intersect at the origin v0 of E , since one would require that α, β > 0. This finishes the proof.

The following corollary proves Theorem 6.1 for the case where α 6= β or α = β < 0.

Corollary 6.47. If α 6= β or α = β < 0, then the set

T ∪
◦
E0 ∪

◦
E1 ∪

◦
E2 ∪N2 ∪ {v0} ∪ {v}

contains the valuations of at most nine positive solutions of (6.5.1).

Proof. If (α, β) 6= (0, 0), by Lemma 6.45, the set T ∪ {v} contains the valuations of at most four

positive solutions of (6.4.1). By Proposition 6.46, if in addition we have α 6= β or α = β < 0, then

the set
◦
E0 ∪

◦
E1 ∪

◦
E2 ∪N2 ∪ {v0} contains the valuations of at most five positive non-degenerate

solutions of (6.4.1).

In what follows, we assume that α = β > 0. If coef(ai) 6= coef(bi) for i = 0, 2 and

coef(a0)/ coef(b0) 6= coef(a2)/ coef(b2), and αβ 6= 0 (see Remark 6.32), and thus Theorem 6.1

comes easy. Indeed, Lemma 6.45 and the second part of the proof of Proposition 6.46 also apply

to this case, and thus so does Corollary 6.47.

We assume furthermore in what follows that coef(ai) = coef(bi) for i = 0, 2, thus the normalized

system (6.4.1) becomes

a0 + ym1
1 + a2y

m2
1 yn2

2 + a3t
αym3

1 yn3
2 = 0,

b0 + ym1
1 + b2y

m2
1 yn2

2 + b4t
αym4

1 yn4
2 = 0.

(6.5.2)

In this section, we prove the following result.

Theorem 6.48. The system (6.5.2) has at most nine non-degenerate positive solutions. Moreover,

there exists a system (6.5.2) that has seven non-degenerate positive solutions.

We first show why the first statement of Theorem 6.48 is trivial if both coef(a0) and coef(a2)

are positive. Note that the reduced system of (6.5.2) with respect to the origin will not have

positive solutions. Indeed, since the reduced system of (6.5.2) with respect to the origin will

have the equation coef(a0) + ym1
1 + coef(a2)ym2

1 yn2
2 , which has no positive solutions. If T1 and T2

intersect non-transversally at a cell of type (I), the relative interior of such a cell does not contain
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the valuations of positive solutions of (6.5.2) (this follows from coef(a0), coef(a2) > 0 as in the

proof of Lemma 6.33 for example). Moreover, we deduce from Corollary 6.40 that (6.5.2) does

not have non-degenerate positive solutions with valuations non-transversal intersection points of

type (II). Therefore, the only cells of T1 and T2 that can contain the valuations of non-degenerate

positive solutions of (6.5.2) are transversal intersection points and non-transversal intersection

points of type (III) that are different from (0, 0). Theorem 6.15 shows that (6.5.2) has at most

three positive solutions with valuations transversal intersection points of T1 and T2. Therefore,

if there does not exist a non-transversal intersection point of type (III) in the relative interior

of a 1-cone of E , then (6.5.2) has at most three positive solutions. Otherwise, if there exists a

non-transversal intersection point v 6= (0, 0) of type (III), then Remark 6.42 and Lemma 6.44 show

that (6.5.2) has at most three positive solutions, and we are done.

In what follows, we assume that coef(a0) < 0 and coef(a2) > 0 are not both positive. Note that

if coef(a0), coef(a2) < 0, or coef(a0) > 0 and coef(a2) < 0, one can associate to (6.5.2) a normalized

system similar to (6.5.2) that has the same number of non-degenerate positive solutions as (6.5.2)

and satisfying coef(a0) < 0 and coef(a2) > 0. This is done via monomial change of coordinates and

multiplying the equations of (6.5.2) by some terms (as the ones made in the proof of Lemma 6.31

for example).

Multiplying each polynomial of (6.5.2) by some real number and making some change of

coordinates if necessary (see the proof of Proposition 6.6 for example), we may assume that

coef(a0) = −1 and coef(a2) = 1. (6.5.3)

6.5.1 First part of Theorem 6.48

In this subsection, we prove the following result.

Proposition 6.49. The system (6.5.2) cannot have more than nine positive solutions.

Let ∆1 and ∆2 (resp. τ1 and τ2, T1 and T2) denote the Newton polytopes (resp. dual subdi-

visions, tropical curves) associated to the first and second equation of (6.5.2) respectively.

Lemma 6.50. The curves T1 and T2 cannot intersect transversally at more than one point.

Proof. Assume that T1 and T2 intersect transversally at two points p0 and p1, we prove that this

gives a contradiction. We treat the case p0 ∈ C0 and p1 ∈ C1 (the other cases are symmetric).

Using Lemma 6.28, we compute the coordinates of p0 and p1 to obtain k0(n4−n3 , m3−m4) and

k1(n4 − n3 , m3 −m4) respectively, with

k0 =
α

m3n4 −m4n3
and k1 =

α

m3n4 −m4n3 −m1(n4 − n3)
.

Note that since p0 ∈ C0 and p1 ∈ C1, we have k0(n4 − n3) < 0 and k1(n4 − n3) > 0. Indeed,

the 1-cone L0 (which is adjacent to both C0 and C1) belongs to a vertical line passing through the

origin (0, 0) of E .

Assume that m3n4−m4n3 > 0, then since k0k1 < 0 (from k0(n4−n3) < 0 and k1(n4−n3) > 0),

we obtain m3n4 −m4n3 −m1(n4 − n3) < 0 from the expressions of k0 and k1. Therefore, from

0 < m3n4 − m4n3 < m1(n4 − n3) and m1 > 0, we obtain 0 < n4 − n3. We deduce from

k0(n4 − n3) < 0 that k0 is negative, which makes α also negative, a contradiction. Similarly, we

arrive at a contradiction when assuming that m3n4 −m4n3 < 0.
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Lemma 6.51. If T1 and T2 intersect non-transversally at a point v 6= (0, 0) of type (III), then T1

and T2 do not intersect transversally at a point, and the reduced system with respect to v has at

most one positive solution.

Proof. Assume that T1 and T2 intersect non-transversally at a point v 6= (0, 0) of type (III)

and transversally at a point p, we prove that this gives a contradiction. Assume without loss

of generality that v ∈ L0. Since T1 and T2 have vertices in L0 that coincide, from the equality

α/n3 = α/n4 (see the beginning of Section 6.4), we deduce that n3 = n4. Moreover, since α > 0

and v ∈ L0, we have n3 = n4 < 0. On the other hand, Lemma 6.44 shows that p ∈ C2, thus by

Lemma 6.28, the coordinates (x1, x2) of p verify

m2x1 + n2x2 = m3x1 + n3x2 − α = m4x1 + n3x2 − α.

A simple computation shows that p = (0, α/(n3 − n2)), and thus α/(n3 − n2) > 0. Indeed, since

otherwise we get that the transversal intersection point p belongs to L0, contradicting Theorem 6.15.

Recall that n2 > 0 ( (6.5.2) is a normalized system). Now, since α > 0 and α/(n3 − n2) > 0, we

get n3 − n2 > 0, a contradiction to n3 < 0 < n2.

As for the second part of the Lemma, the reduced system with respect to v is

− 1 + ym1
1 + coef(a3)ym3

1 yn3
2 = −1 + ym1

1 + coef(b4)ym4
1 yn3

2 = 0, (6.5.4)

and has at most one positive solution. Indeed, assume that (ρ1, ρ2) is a positive solution of the

latter system. Taking the difference of two equations we get coef(a3)ρm3
1 = coef(b4)ρm4

1 , and thus

ρ1 = (coef(a3)/ coef(b4))1/(m4−m3). Plugging it in the first equation of (6.5.4), we retrieve only

one value for ρ2.

Note that since α > 0, the curves T1 and T2 intersect non-transversally at the apex of E (see

Figure 6.11 for example). Furthermore, these curves intersect at three cells E0, E1 and E2 of

type (I) contained in L0, L1 and L2 respectively. Denote again the apex of E by v0. It follows

from Corollary 6.40 that since coef(ai) = coef(bi) for i = 0, 2, the system (6.5.2) does not have

a positive solution with valuation at a point of type (II). Since coef(a2) > 0, the reduced system

y1 + coef(a2)ym2
1 yn2

2 = 0 does not have positive solutions (see Proof of Lemma 6.33 for example),

thus
◦
E1 does not contain valuations of positive solutions of (6.5.2). Lemmata 6.50 and 6.51 show

that whether T1 and T2 intersect non-transversally at point v 6= v0 of type (III) or not, the set

D := T1 ∩ T2 \ (
◦
E0 ∪

◦
E1 ∪

◦
E2 ∪ {v0}) contains the valuations of at most one positive solution

of (6.5.2).

Figure 6.11: Examples showing that the curves T1 and T2 intersect at the apex v0 of E
and at three cells of type (I).
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From Subsection 6.4.3, the number of positive solutions of (6.5.2) with valuation v0 is equal

to the number of positive solutions of the reduced system of

−1 + ym1
1 + ym2

1 yn2
2 + a3t

αym3
1 yn3

2 = 0,

c0t
γ0 + c2t

γ2ym2
1 yn2

2 − a3t
αym3

1 yn3
2 + b4t

αym4
1 yn4

2 = 0
(6.5.5)

with respect to v0, with cit
γi = bi − ai, ord(ci) = 0 and γi ≥ 0 for i = 0, 2. Recall from

Subsection 6.4.1 that

f0,t = coef(c0)tγ0 + coef(c2)tγ2yn2 − coef(a3)tαyn3 + coef(b4)tαyn4 (6.5.6)

and

f2,t = ctδ − coef(a3)tαy
m3n2−m2n3

n2 + coef(b4)tαy
m4n2−m2n4

n2 , (6.5.7)

with ci = bi−ai, γi = ord(ci) for i = 0, 2 and ctδ is the first-order term of c2−c0, are approximation

polynomials of (6.5.2) for E0 and E2 respectively. We deduce from Corollary 6.12 that the number

of non-degenerate positive solutions of (6.5.2) with valuation in
◦
E0 (resp.

◦
E2) is less or equal to

the number of non-degenerate roots RK∗>0 of f0,t (resp. f2,t) with positive order and that are also

largely ordered (see Definition 6.9) with respect to f0,t (resp. f2,t). The first order terms of all

such roots of f0,t and f2,t are completely determined from some edges of Γ0 and Γ2 with negative

slope together with their respective facial subpolynomials.

Remark 6.52. In what follows, by “ edge” of the lower hull Γ0 (resp. Γ2), we mean a segment of

Γ0 (resp. Γ2) that supports only a binomial.

In 6.5.1.1, we make an analysis on f0,t, f2,t and (6.5.5) with respect to the different possibilities

of equalities and inequalities between α, γ0 and γ2. The results obtained in 6.5.1.1 can be summa-

rized in the following two tables. The numbers appearing in the entries of these tables represent

the maximum number of positive solutions of (6.5.2) with valuations in the associated intersection

components of T1 ∩ T2. In fact, the non-zero entries in the row E0 (resp. E2) correspond to the

maximal numbers of edges of Γ0 (resp. Γ2) with negative slope.

Intersection Locus γ0 6= γ2 and min(γ0, γ2) < α γ0 = γ2 < α α < min(γ0, γ2)

D 1 1 1

E0 2 1 2

E2 1 1 1

{v0} 0 1 2

Table 6.1: α 6= γi for i = 0, 2.



117 Chapter 6. Constructing polynomial systems

Intersection Locus α = γ0 < γ2 α = γ2 < γ0 α = γ0 = γ2 α = γ0 = γ2
coef(c0) = coef(c2) coef(c0) 6= coef(c2)

D 1 1 1 1

E0 0 1 0 0

E2 0 0 1 0

{v0} 5 5 5 8

Table 6.2: α = γi for i ∈ {0, 2}.

The bound 8+1 = 9 for the number of non-degenerate positive solutions of (6.5.2) is the largest

among all other possible cases shown in the latter tables. This finishes the proof of Proposition 6.49

given that the entries of the tables are correct.

6.5.1.1 Proof that the entries of the tables (6.1) and (6.2) are correct

We make an analysis similar to that formulated in Subsection 6.4.3 on f0,t, f2,t and on all possible

reduced systems of (6.5.5) with respect to v0. Assume without loss of generality that n3 < n4.

First, we note that Γ0 is the lower part of the convex hull of points in

{(0, γ0), (n2, γ2), (n3, α), (n4, α)}.

Since (n3, α) and (n4, α) have the same second coordinate, clearly Γ0 has at most two edges with

negative slope. The same goes for Γ2, which is the lower part of the convex hull of at most three

points among

{(0, δ), ((m3n2 −m2n3)/n2, α) , ((m4n2 −m2n4/n2, α)}.

Thus Γ2 has at most one edge with negative slope.

i) First case: γ0 6= γ2 and min(γ0, γ2) < α. Then the reduced system of (6.5.5) with respect to

v0 has no positive solutions (since in any case, the second equation has only one monomial).

We see an example in Figure 6.12 of Γ0 and Γ2.

Figure 6.12: The graphs Γ0 and Γ2 in the first case.

ii) Second case: γ0 = γ2 < α. Then the reduced system of (6.5.5) with respect to v0 is

−1 + yw1
1 + ym2

1 yn2
2 = coef(c0) + coef(c2)ym2

1 yn2
2 = 0,
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which has at most one positive solution (this is deduced by replacing ym2
1 yn2

2 by− coef(c2)/ coef(c0)

in the first equation of the latter system). Since the points (0, γ0) and (n2, γ2) have the same

second coordinate, the lower hull Γ0 has at most one edge with negative slope (see Figure 6.13

on the left for example).

Figure 6.13: The graphs Γ0 and Γ2 in the second case.

iii) Third case: γ2 = α < γ0 (The case where γ0 = α < γ2 is similar). The reduced system

of (6.5.5) with respect to v0 is

−1 + ym1
1 + ym2

1 yn2
2 = coef(c2)ym2

1 yn2
2 − coef(a3)ym3

1 yn3
2 + coef(b4)ym4

1 yn4
2 = 0,

which has at most five positive solutions (since this system is of two trinomials in two

variables). The lower hull Γ0 has at most one edge with negative slope (see Figure 6.14 on

the left). Recall that δ = ord(c2 − c0). Thus, since γ2 = α < γ0, we get δ = γ2 < γ0 which

implies that Γ2 is a horizontal edge (see Figure 6.14 on the right).

Figure 6.14: The graphs Γ0 and Γ2 in the third case.

iv) Fourth case: γ2 = α = γ0. The lower hull Γ0 is a horizontal segment (see Figure 6.15 on the

left). Then the reduced system of (6.5.5) with respect to v0 is

−1 + ym2
1 yn2

2 + ym1
1 = 0,

coef(c0) + coef(c2)ym2
1 yn2

2 − coef(a3)ym3
1 yn3

2 + coef(b4)ym4
1 yn4

2 = 0.
(6.5.8)

We distinguish two cases:
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1. Assume that coef(c0) = coef(c2). Then (6.5.8) has at most five positive solutions (see

Proposition 6.53). Since the first-order term of c2− c0 is ctδ, from coef(c0) = coef(c2),

ord(c0) = ord(c2) = γ0 = γ2, we get δ > γ0 = γ2 = α. Therefore, the lower hull Γ2 has

at most one edge with negative slope (see Figure 6.15 on the right).

2. Assume that coef(c0) 6= coef(c2). Then (6.5.8) has at most eight positive solutions (see

Proposition 6.53). Since the first-order term of c2− c0 is ctδ, from coef(c0) 6= coef(c2),

we get δ = γ0 = γ2 = α. Therefore, the lower hull Γ2 is a horizontal line (see Figure 6.14

on the right).

Figure 6.15: The graphs Γ0 and Γ2 in the fourth case.

v) Fifth case: α < min(γ0, γ2). Then the reduced system of (6.5.5) with respect to v0 becomes

−1 + ym1
1 + ym2

1 yn2
2 = − coef(a3)ym3

1 yn3
2 + coef(b4)ym4

1 yn4
2 = 0,

which has at most two positive solutions.

Figure 6.16: The graphs Γ0 and Γ2 in the fifth case.

Consider the real polynomial system

−1 + ym2
1 yn2

2 + ym1
1 = 0,

coef(c0) + coef(c2)ym2
1 yn2

2 − coef(a3)ym3
1 yn3

2 + coef(b4)ym4
1 yn4

2 = 0,
(6.5.9)

with support in Z2, where both m1 and n2 are positive integers.
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Proposition 6.53. If coef(c0) = coef(c2), then (6.5.9) has at most five positive solutions. More-

over, if coef(c0) 6= coef(c2), then (6.5.9) has at most eight positive solutions.

Proof. For the first statement. Without loss of generality, suppose that coef(c0) < 0. Then, the

system

−1 + ym2
1 yn2

2 + ym1
1 = 0,

−coef(a3)

coef(c2)
ym3

1 yn3
2 +

coef(b4)

coef(c2)
ym4

1 yn4
2 − ym1

1 = 0,
(6.5.10)

has the same number of non-degenerate positive solutions as (6.5.9). Indeed, the second equation

of (6.5.10) is obtained by dividing the second equation of (6.5.9) by coef(c2), and subtracting from

it the first equation of (6.5.9). The system (6.5.10) is a system of two trinomials in two variables,

thus it has at most five positive non-degenerate solutions.

For the second statement. Assume now that coef(c0) 6= coef(c2). We look for the positive

solutions of (6.5.9). The first equation of this system may be written as y2 = xα(1 − x)β , where

x = ym1
1 , α = −m2/(m1n2) and β = 1/n2. It is clear that y1, y2 > 0 ⇔ x ∈ I0 =]0, 1[. Plugging

y1 and y2 in the second equation of (6.5.9), we get the equation f = 0, with

f(x) = coef(c0) + coef(c2)− coef(c2)x− coef(a3)xα3(1− x)β3 + coef(b4)xα4(1− x)β4 ,

αi :=
min2 −m2ni

m1n2
and βi :=

ni
n2

for i = 3, 4. The number of positive solutions of (6.5.9) is equal

to the number of roots of f in I0. Note that the function f has no poles in I0, thus by Rolle’s

theorem applied to f and f ′, we have

]{x ∈ I0 | f(x) = 1} ≤ ]{x ∈ I0 | f ′′(x) = 0}+ 2.

Since

f ′′(x) = − coef(a3)xα3−2(1− x)β3−2H3(x) + coef(b4)xα4−2(1− x)β4−2H4(x),

where H3 and H4 are polynomials of degree at most two, we get

f ′′(x) = 0⇔ φ(x) = 1, where

φ(x) := −coef(a3)

coef(b4)
· x

α3−α4(1− x)β3−β4H3(x)

H4(x)
.

Thus applying Theorem 4.2 of Chapter 4 (with max(degH3,degH4) = 2) we get ]{x ∈ I0 | f ′′(x) =

0} ≤ 6, and therefore (6.5.9) has at most eight positive solutions.

6.5.2 Construction: second part of Theorem 6.48

In this subsection, we prove the following result

Proposition 6.54. There exists a system (6.5.2) having seven non-degenerate positive solutions.

In what follows, we impose α = γ2 < γ0 to construct a system (6.5.2) with seven positive

solutions (see Table 6.2). Assume that
◦
E0 contains the valuation of one (which is the maximum

possible for this case) positive solution of (6.5.2). Then, the lower hull Γ0 has only one edge with

negative slope, and thus both n3 and n4 are positive (see Figure 6.14 on the left).
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Therefore, since α > 0, both T1 and T2 do not have a vertex in L0 (see Figure 6.18 for example).

Consider the reduced system

−1 + ym1
1 + ym2

1 yn2
2 = 0,

coef(b4)ym4
1 yn4

2 − coef(a3)ym3
1 yn3

2 + coef(c2)ym2
1 yn2

2 = 0,
(6.5.11)

of (6.5.5) with respect to v0.

Lemma 6.55. If the curves T1 and T2 intersect non-transversally at a point v 6= v0 of type (III),

then (6.5.11) does not have five positive solutions.

Proof. Assume that T1 and T2 intersect non-transversally at a point v of type (III). We consider

the case where v ∈
◦
L2 since the other cases are symmetric. Then, since v is a common vertex of

T1 and T2, we have
αn2

m3n2 −m2n3
=

αn2

m4n2 −m2n4
,

from which we deduce (m4−m3)n2−m2(n4−n3) = 0. This means that the segments [(0, 0), (m2, n2)]

and [(m3, n3), (m4, n4)] are parallel. Note that the Newton polytopes of the first and second equa-

tions of (6.5.11) are the triangles

[(0, 0), (m1, 0), (m2, n2)] and [(m2, n2), (m3, n3), (m4, n4)]

respectively. Since (m4−m3)n2−m2(n4−n3) = 0, the vector F0,2, normal to the facet [(0, 0), (m2, n2)]

of [(0, 0), (m1, 0), (m2, n2)], is equal (up to a scalar multiplication) to the vector F3,4, normal to

the facet [(m3, n3), (m4, n4)] of [(m2, n2), (m3, n3), (m4, n4)]. Therefore, the triangles

[(0, 0), (m1, 0), (m2, n2)] and [(m2, n2), (m3, n3), (m4, n4)]

would alternate (see Definition 4.30 in Chapter 4), and thus by Theorem 4.3 of Chapter 4, the

system (6.5.11) cannot reach the maximal number five of positive solutions.

We assume in what follows that T1 and T2 do not intersect non-transversally at a point of type

(III) belonging to the relative interior of a 1-cone of E .

Remark 6.56. The set D = T1 ∩ T2 \ (
◦
E0 ∪

◦
E1 ∪

◦
E2 ∪ {v0}) consists of transversal intersection

points (which has cardinality at most 1 by Lemma 6.50) together with non-transversal points of

type (II).

Since intersection points of type (II) are not valuations of non-degenerate positive solutions

of (6.5.2), Remark 6.56 shows that (6.5.2) has at most one non-degenerate positive solution with

valuation in D, that is, by Lemma 6.50, a transversal point. Therefore, Table 6.2 shows that since

α = γ2 < γ0, the curves T1 and T2 intersect transversally at a point p.

We start our construction by finding a system (6.5.11) that has five positive solutions. Since

systems of two trinomials in two variables having five positive solutions are hard to generate

(c.f. [DRR07]), we will borrow one from the literature and base our construction upon it.

First, we define a univariate function f such that for some constant c, the equation f = c has

the same number of solutions in ]0, 1[ as that of positive solutions of (6.5.11). Assume without loss

of generality that coef(a3) = −1. The first equation of (6.5.11) may be written as y2 = xk(1−x)l,

where x := ym1
1 , k = −m2/(m1n2) and l = 1/n2. It is clear that y1, y2 > 0⇔ x ∈ I0 :=]0, 1[. Since
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we are looking for solutions of (6.5.11) with non-zero coordinates, we divide its second equation

by ym2
1 yn2

2 . Plugging y1 and y2 in the second equation of 6.5.11, we get

coef(c2) + xk3(1− x)l3 + coef(b4)xk4(1− x)l4 = 0, (6.5.12)

where ki =
min2 −m2ni

m1n2
and li =

ni − n2

n2
for i = 3, 4. The number of positive solutions of (6.5.11)

is equal to the number of solutions of (6.5.12) in I0. Therefore we want to compute values of

coef(c2), coef(b4) and (mi, ni) for i = 1, 2, 3, 4 such that f(x) = − coef(c2) has five solutions in I0,

where

f(x) := xk3(1− x)l3 + coef(b4) · xk2(1− x)l2 . (6.5.13)

Note that the function f has no poles in I0, thus by Rolle’s theorem we have ]{x ∈ I0 |f(x) =

1} ≤ ]{x ∈ I0 |f ′(x) = 0}+ 1. Since

f ′(x) = xk3−1(1− x)l3−1ρ3(x) + a4x
k4−1(1− x)l4−1ρ4(x),

where ρi(x) = ki − (ki + li)x for i = 3, 4, we get f ′(x) = 0⇔ φ(x) = 1, where

φ(x) := − coef(b4)
xk4−k3(1− x)l4−l3ρ4(x)

ρ3(x)
. (6.5.14)

Consider the system

x6 + (44/31)y3 − y = y6 + (44/31)x3 − x = 0, (6.5.15)

taken from [DRR07], which has five positive solutions. The rational function (6.5.14), associated

to (6.5.15) is

φ0(x) = (44/31)5/6 · x
1/6(1− x)1/3(−11/4 + 9x/4)

(−35/12 + 11x/4)
.

Thus, if

coef(b4) = −
(

44

31

) 5
6

, k4 − k3 =
1

6
, l4 − l3 =

1

3
,

k4 = −11

4
and k3 = −35

12
,

(6.5.16)

then φ(x) = 1 has four positive solutions in I0. Assume that equalities in (6.5.16) hold true.

Plotting the function f : R → R, x 7→ f(x), we get that the graph of f has four critical points

contained in I0 with critical values situated below the x-axis. Moreover, this graph intersects

transversally the line {y = −0.36008} in five points with the first coordinates belonging to I0.

Therefore, the equation f(x) = −0.36008 has five non-degenerate positive solutions in I0. In what

follows, we find (mi, ni) ∈ Z2 for i = 1, 2, 3, 4, satisfying the equalities in (6.5.16) so that (6.5.11)

has five non-degenerate positive solutions.

Assume that m2 > 0 and recall that both m1 and n2 are positive. The equalities in (6.5.16)

show that li > 0, ki < 0 and ki < li for i = 3, 4, therefore we have 0 < n2 < ni, min2 − nim2 < 0

and (mi − m1)n2 − ni(m2 − m1) < 0 for i = 3, 4. Plotting the three points (0, 0), (m1, 0) and
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(m2, n2), we deduce from the latter inequalities that the points (m3, n3) and (m4, n4) belong to

the region B1 of Figure 6.17.

Figure 6.17: The region B1 and triangle B1,1

We also deduce from equalities in (6.5.16) that l4 > l3 and k4 > k3, and thus n4 > n3 and

(m4−m3)n2− (n4−n3)m2 > 0. Fixing (m3, n3) in the region B1, we obtain that (m4, n4) belongs

to the triangle B1,1 depicted in Figure 6.17.

Note that the vertex v1 ∈ L2 (resp. v2 ∈ L2) of T1 (resp. T2) has coordinates

α

m3n2 − n3m2
(n2,−m2)

(
resp.

α

m4n2 − n4m2
(n2,−m2)

)
,

and thus from m3n2 − n3m2 < m4n2 − n4m2 < 0, we deduce that the first coordinate of v2 is

smaller than that of v1 (see Figure 6.18).

All these restrictions impose that there exists a transversal intersection point of T1 and T2 in

C2 (see Figure 6.18 for example). Moreover, since coef(b4) < 0 (see (6.5.16)), coef(a3) = −1 (by

assumption) and coef(a0) = coef(b0) = −1, Proposition 6.27 shows that the intersection point p

is the valuation of a positive solution of (6.5.2). Since coef(c2) = 0.36008 (from the choice f(x) =

− coef(c2) = −0.36008), for any negative coef(c0), the facial subpolynomial coef(c0) + 0.36008yn2

of f0,t has a positive root. We choose coef(c0) to be equal to −0.36008 so that the root for

−0.36008 + 0.36008yn2 becomes equal to 1.

According to this analysis, it suffices to choose exponents and coefficients of (6.5.2) satisfying

m1 = 6, (m2, n2) = (3, 6), (m3, n3) = (−14, 7), (m4, n4) = (−12, 9), a0 = −1, a2 = 1, a3 = −tα,

b0 = −1 + 0.36008tγ0 (verifying γ0 > α), b2 = −1 + tα and b4 = − (44/31)
5/6

tα. Therefore, the

system

−1 + y6
1 + y3

1y
6
2 − tαy−14

1 y7
2 = 0,

−1 + 0.36008tγ0 + y6
1 + (1− 0.36008tα)y3

1y
6
2 − (44/31)

5
6 tαy−12

1 y9
2 = 0,

(6.5.17)

which has seven non-degenerate solutions, proves Proposition 6.54.
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Figure 6.18: Newton polytopes and tropical curves associated to a normalized system
having seven positive solutions.

6.5.2.1 A software computation

Using Maple 17 as well as the libraries FGb and RS, Pierre-Jean Spaenlehauer [Spa] provided

us with a computation he made of the non-degenerate positive solutions of a system (6.5.17) for

γ0 = 7 and α = 1 that goes as follows. For computational reasons, he has replaced the real number

(44/31)5/6 in (6.5.17) by the fraction

26807502408507435267952730104920543812845885439976

20022295568917288472920446333489413342983920443429

which approximates (44/31)5/6. For t = 1/100 000, the computer software has found seven positive

solutions. An approximation of these solutions goes as follows.

(0.99999, 0.00001), (0.99171, 0.60681), (0.96651, 0.76771), (0.95765, 0.79907),

(0.95201, 0.81642), (0.88602, 0.95151), (0.53645, 1.61099).

6.6 Proof of Theorem 6.3 (part 1).

Consider a highly non-degenerate normalized system

a0 + ym1
1 + a2y

m2
1 yn2

2 + a3t
αym3

1 yn3
2 = 0,

b0 + ym1
1 + b2y

m2
1 yn2

2 + b4t
βym4

1 yn4
2 = 0.

(6.6.1)

satisfying that all ai and bj are in RK∗ and verify ord(ai) = ord(bj) = 0, all wi are in Z2, both m1,

n2 are positive and both α, β are real numbers. This Section is devoted to proving the following

result.
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Figure 6.19: The seven regions.

Theorem 6.57. If coef(ai) = coef(bi) for i = 0, 2 and either α 6= β or α < 0, then the sharp

bound on the number of non-degenerate positive solutions of (6.6.1) is six.

The system (6.4.12) appearing in Example 6.38 of Section 6.4, satisfies the hypotheses of

Theorem 6.57 and has six non-degenerate positive solutions. Therefore, if Theorem 6.57 holds

true, then six is a sharp bound on the number of non-degenerate positive solutions of (6.6.1) .

In what follows, we assume the hypotheses of Theorem 6.57. As in the previous section, v0

denotes the origin of E . Let ∆1 and ∆2 (resp. τ1 and τ2, T1 and T2) denote the Newton polytopes

(resp. dual subdivisions, tropical curves) associated to the first and second equations respectively.

It follows from Corollary 6.40 that since coef(ai) = coef(bi) for i = 0, 2, the system (6.6.1) does

not have a positive solution with valuation at a non-transversal intersection point of type (II).

We now show why Theorem 6.57 is trivial if both coef(a0) and coef(a2) are positive. Note that

the reduced system of (6.6.1) with respect to v0 will not have positive solutions, and if T1 and

T2 intersect non-transversally at a cell of type (I), such a cell does not contain the valuations of

positive solutions of (6.6.1). Moreover, Theorem 6.15 in Section 6.3 shows that (6.6.1) has at most

three positive solutions with valuations transversal intersection points of T1 and T2. Therefore,

if there does not exist a non-transversal intersection point of type (III) in the relative interior

of a 1-cone of E , then (6.6.1) has at most three positive solutions. Otherwise, if there exists a

non-transversal intersection point v 6= v0 of type (III), then Remark 6.42 and Lemma 6.44 in

Section 6.4 show that (6.6.1) has at most three positive solutions.

Using similar arguments as in Section 6.5, in what follows we assume that

coef(a0) = −1 and coef(a2) = 1.

Therefore, Lemma 6.33 in Section 6.4 shows that if there exists a non-transversal cell E1 of type

(I) contained in L1, then
◦
E1 does not contain valuations of positive solutions of (6.6.1). In this

section, the only cells of T1 ∩ T2 that may contain valuations of non-degenerate positive solutions

of (6.6.1) are the following.

- Non-transversal cells of type (I) contained in L0 ∪ L2.

- Transversal intersection points in ∪2
i=0

◦
Ci.

- A non-transversal intersection point of type (III) contained in
◦
L0 ∪

◦
L1.
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The reason we omit the case where there could be an intersection point v of type (III) in
◦
L2 is

the following. Assume that T1 and T2 intersect non-transversally at a point v ∈
◦
L2 of type (III).

Then, since v is the intersection of a vertex in
◦
L2 of T1 and a vertex of T2 in the same 1-cone of

E , we have α/(m3n2 −m2n3) = β/(m4n2 −m2n4). Moreover, since T1 and T2 do not intersect

non-transversally at a point of type (III) belonging to
◦
L0 (see Lemma 6.43), we have α/n3 6= β/n4.

The highly non-degenerate normalized system

c0 + zk11 + c2z
k2
1 zl22 + c3t

αzk31 zl32 = 0,

d0 + zk11 + d2z
k2
1 zl22 + d4t

βzk41 zl42 = 0,
(6.6.2)

where coef(c0) = coef(d0) = −1 and coef(c2) = coef(d2) = 1, has the same number of non-

degenerate positive solutions as (6.6.1), and the associated tropical curves T̃1 and T̃2 intersect at

a point ṽ of type (III) contained in L0. Indeed, divide the first and the second equations of (6.6.1)

by a2 and b2 respectively, and make the monomial coordinate change (y1, y2) 7→ (z1, z2) such that

ym1
1 = zk21 zl22 and ym2

1 yn2
2 = zk11 for some integers k1 > 0, k2 and l2 > 0. One can easily check

that α/l3 = β/l4, and thus T̃1 and T̃2 intersect non-transversally at a point of type (III) contained

in
◦
L0. Moreover, since (6.6.2) is also highly non-degenerate, we get that

◦
L1 ∪

◦
L2 does not contain

non-transversal intersection points of type (III).

6.6.1 First case: 0 < α < β

The tropical curves T1 and T2 intersect non-transversally at the origin v0 of E and at three linear

components of type (I) denoted by Ei for i = 0, 1, 2 such that Ei ⊂ Li.

Recall that by Lemma 6.34 in Section 6.4, the polynomials

f0,t = coef(c0)tγ0 + coef(c2)tγ2yn2 − coef(a3)tαyn3 + coef(b4)tβyn4

and f2,t := ctδ − coef(a3)tαy
m3n2−m2n3

n2 + coef(b4)tβy
m4n2−m2n4

n2 ,

where ci := bi − ai, γi := ord(ci) for i = 0, 2, c := coef(c2 − c0) and δ := ord(c2 − c0), are

approximation polynomials of (6.6.1) for E0 and E2 respectively.

6.6.1.1 There exists a non-transversal intersection of type (III)

Here, we study the case where T1 and T2 intersect non-transversally at a point v of type (III)

contained in
◦
L0 ∪

◦
L1. Note that if v ∈

◦
Li for some i = 0, 1, then the vertices v and v0 are endpoints

of Ei. Let C ⊂ T1 ∩ T2 denote the intersection component E0 ∪ E2 ∪ {v} ∪ {v0}.
Lemma 6.44 shows that (6.6.1) has at most one non-degenerate positive solution with valuation

a transversal intersection point of T1 and T2. We want to prove the following result.

Proposition 6.58. The system (6.6.1) has at most six non-degenerate positive solutions with

valuation in C. Moreover, if (6.6.1) has six non-degenerate positive solutions with valuation in C,

then (6.6.1) does not have a positive solution with valuation a transversal intersection point of T1

and T2.

Since there exists a non-transversal intersection of type (III), Theorem 6.57 becomes a conse-

quence of Proposition 6.58 given that the latter holds true.



127 Chapter 6. Constructing polynomial systems

• First case: v ∈ L0. We have n4 < n3 < 0. Indeed, the intersection point v belongs to L0 and

satisfies v = (0, α/n3) = (0, β/n4) (since v is a common vertex of T1 and of T2). Therefore, we get

β/n4 = α/n3 < 0, and thus from 0 < α < β, we get n4 < n3 < 0.

Recall that Γ0 (resp. Γ2) is the lower part of the convex hull of points in

{(0, γ0), (n2, γ2), (n3, α), (n4, β), }

(resp. {(0, δ), ((m3n2 −m2n3)/n2, α) , ((m4n2 −m2n4)/n2, β)}) .

Since n4 < n3 < 0 < n2 and α, β, γ0, γ2 > 0, the lower hull Γ0 contains an edge e1 ⊂ Γ0

with endpoints (n4, β) and (n3, α), where e1 has negative slope (see Figure 6.20 for example).

Moreover, from α/n3 = β/n4, we deduce that the facial subpolynomial f
(1)
0 (y) = − coef(a3)yn3 +

coef(b4)yn4 (which is associated to e1) is obtained from f0,t(t
−λ1y)/tµ1 , where λ1 = β/n4 and

µ1 = 0. Therefore, by Corollary 6.12 of Section 6.2, if f
(1)
0 has a positive root, it does not

correspond to a positive non-degenerate solution of (6.6.1) with valuation in
◦
E0. Therefore,

◦
E0

contains the valuations of at most two positive solutions of (6.6.1). Note that by Remark 6.42 of

Section 6.4, the intersection point v is the valuation of at most two non-degenerate positive solutions

of (6.6.1), and recall that by Remark 6.35 of Section 6.4, we have
◦
E2 contains the valuation of at

most two positive solutions.

From Subsection 6.4.3, the number of positive solutions of (6.6.1) with valuation v0 is equal

to the number of positive solutions of the reduced system of

−1 + ym1
1 + ym2

1 yn2
2 + a3t

αym3
1 yn3

2 = 0,

c0t
γ0 + c2t

γ2ym2
1 yn2

2 − a3t
βym3

1 yn3
2 + b4t

αym4
1 yn4

2 = 0
(6.6.3)

with respect to v0, with cit
γi = bi − ai, ord(ci) = 0 and γi ≥ 0 for i = 0, 2.

We prove Proposition 6.58 by analyzing the different cases for the system (6.6.3). Recall

Corollary 6.12 and that by an edge of Γ0 and Γ2, we mean a line segment of these lower hulls

supporting only a binomial.

i) Assume that there exists only one element of the set {α, γ0, γ2} that is equal to

min(α, γ0, γ2). Recall that the reduced system of (6.4.14) with respect to v0 has no real

positive solutions. If
◦
E0,

◦
E2 or {v} contains the valuations of at most one positive solution,

then C contains the valuations of at most five, and we are done.

Assume that (6.6.1) has two non-degenerate positive solutions with valuations in each of
◦
E0,

◦
E2 and {v}. Note that since there exist positive solutions with valuation v, the sys-

tem (6.4.24) from Subsection 6.4.4 shows that coef(a3) coef(b4) > 0. The two positive roots

of f0,t (which are associated to two positive solutions of (6.6.1) with valuation in
◦
E0) cor-

respond to two edges of Γ0 \ {e1} with negative slopes. Since n4 < n3 < 0 < n2, we

have β > α > γ0 > γ2 (see Figure 6.20 on the left), and by Descartes’ rule of sign, we

get coef(c0) coef(a3) > 0 and coef(c2) coef(c0) < 0, thus coef(c2) coef(a3) < 0. Similarly,

since 0 < δ < α < β and (6.6.1) has two positive solutions with valuations in
◦
E2, applying

Corollary 6.12 on f2,t, we deduce that m4n2 −m2n4 < m3n2 −m2n3 < 0 (see Figure 6.20

on the right). Moreover, since δ = min(γ0, γ2) = γ2, the coefficient c, appearing in f2,t, has

the same sign as that of coef(c2). Therefore by Descarte’s rule of sign, the number of sign

changes of f2,t is equal to one, thus a contradiction to (6.6.1) having two non-degenerate
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positive solutions with valuations in
◦
E2. We deduce that (6.6.1) has at most five positive

solutions with valuation in C.

Figure 6.20: Examples of graphs Γ0 and Γ2 for n4 < n3 < 0 < n2 and m4n2 −m2n4 <
m3n2 −m2n3 < 0.

ii) Assume that γ0 = γ2 < α. Recall that the reduced system of (6.6.1) with respect to

v0 has at most one positive solution. Moreover, the lower hull Γ0 contains two edges

e1 and e2 (corresponding to the facial subpolynomials − coef(a3)yn3 + coef(b4)yn4 and

coef(b4)yn4 + coef(c0) respectively) with negative slope, and a horizontal edge e3 corre-

sponding to coef(c0) + coef(c2)yn2 (see Figure 6.21). Therefore, only e2 may correspond to

a positive solution of (6.6.1) with valuation in
◦
E0, and thus C contains the valuation of at

most six positive solutions.

Figure 6.21: An example of Γ0 for γ0 = γ2 < α.

Assume that this bound is reached. We prove that (6.6.1) does not have a non-degenerate

positive solution with valuation a transversal intersection point of T1 and T2. Recall that

δ ≥ γ0. We have δ = γ0. Indeed, if δ > γ0, then coef(c0) = − coef(c2), and the reduced

system of (6.6.1) with respect to v0 may be written as

− 1 + yw1
1 + ym2

1 yn2
2 = −1 + ym2

1 yn2
2 = 0, (6.6.4)

which does not have positive solutions. This is a contradiction to (6.6.1) having six positive

solutions with valuation in C.
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Since
◦
E2 contains the valuations of two positive solutions of (6.6.1) (by assumption), all

edges of Γ2 have negative slope, and using similar arguments as in i), we have

m4n2 −m2n4 < m3n2 −m2n3 < 0. (6.6.5)

The latter inequalities together with n4 < n3 < 0 show that the points (m3, n3) and (m4, n4)

belong to the region A of Figure 6.19. Moreover, since both α and β are positive, each of T1

and T2 has a vertex v1 and v2 respectively in L2. Lemma 6.44 shows that since v ∈ L0, the

curves T1 and T2 intersect transversally in at most one point p.

Assume that such an intersection p exists, and that p is the valuation of a positive solution

of (6.6.1), we prove that this gives a contradiction. Then by Lemma 6.44, we have p ∈
C2. Moreover, since coef(a2) > 0, we deduce from Proposition 6.27 that both coef(a3)

and coef(b4) are negative. Descartes’ rule of signs applied to the polynomial (6.4.25) of

Subsection 6.4.4 associated to the reduced system with respect to v shows that

m3n4 −m4n3

n4 − n3
> m1 > 0.

Indeed, since (6.4.25) has two positive solutions and m1 > 0. Therefore, from n4 < n3 we

get m3n4 −m4n3 < 0, and thus comparing the coordinates of v1 to those of v2 using the

inequalities in (6.6.5) gives that the first coordinate of v1 is smaller than that of v2 (See

Figure 6.22 on the right). Moreover, the inequality m3n4 − m4n3 < 0 shows that fixing

(m3, n3) in the region A of Figure 6.19, the point (m4, n4) is contained in region A1 of

Figure 6.22. However, under these constraints on (m3, n3), (m4, n4), v1 and v2, the tropical

curves T1 and T2 do not intersect transversally at a point contained in the 2-cone C2, a

contradiction.

Figure 6.22: The region A1 with respect to the triangle [(0, 0), (m1, 0), (m2, n2)].

iii) Assume that α = γ0 < min(γ2, β) (we omit the case where α = γ2 ≤ β < γ0 since it is

similar). Recall that the reduced system (6.4.16) with respect to v0 has at most two positive

solutions. The only edge of Γ0 having a negative slope is e1, thus
◦
E0 does not contain

valuations of positive solutions of (6.6.1) (see Figure 6.23 left). Moreover, since δ = γ0 = α,

the lower hull Γ2 contains at most one edge with negative slope (see Figure 6.23 right).

Therefore, there exists at most five solutions of (6.6.1) with valuation in C.
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Figure 6.23: Examples of Γ0 and Γ2 for γ0 = α.

iv) Assume that α = γ0 = γ2 < β. Recall that the reduced system (6.4.18) with respect to v0

has at most three positive solutions. The lower hull Γ0 contains only e1 and one horizontal

edge (See Figure 6.24 on the left), and thus
◦
E0 does not contain valuations of positive solu-

tions of (6.6.1). Recall that by Lemma 6.44, since v ∈ L0, if T1 and T2 intersect transversally,

then this transversal intersection point belongs to C2. Note that since α > 0, if T1 does not

have a vertex in
◦
L1 ∪

◦
L2, then T1 does not have an edge contained in C2, and thus T1 and

T2 do not intersect transversally at a point in C2. The number of edges of Γ0 with negative

slope depends on whether δ is equal to γ0 or not. We distinguish two cases for δ and deduce

that if (6.6.1) has six positive solutions with valuation in C, then T1 does not have a vertex

in either L1 or L2.

Assume first that δ = γ0. We deduce from f2,t that the lower hull Γ2 contains one horizontal

edge and at most one other edge with non-zero slope (see Figure 6.24 on the center). There-

fore (6.6.1) has at most one positive solution with valuation in
◦
E2. This means that the maxi-

mal number of positive solutions of (6.6.1) with valuations in the intersection component C is

equal to six. Assuming that this bound is reached, we get that the reduced system (6.4.18)

with respect to v0 has the maximum of three positive solutions. Therefore, since such a

system is supported on a circuit, its support W0 := {(0, 0), (m1, 0), (m2, n2), (m3, n3)},
satisfies the following. The triangle ∆w, formed by any three distinct points of W0 does not

contain the remaining forth point of W0. Since n3 < 0, the latter restrictions mean that

(m3, n3) is contained in region F of Figure 6.19. Therefore, since α > 0, the tropical curve

T1 does not have a vertex in
◦
L1 ∪

◦
L2 (see Figure 6.24 on the right), and thus no transversal

intersection points.

Assume now that δ > γ0. Then (6.6.1) may have two positive solutions with valuation in
◦
E2. Moreover, if this bound is reached, then m3n2−m2n3 > min(0,m4n2−m2n4). Indeed,

since otherwise Γ2 will not be optimally sloped (c.f. Figure 6.25 for example).
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Figure 6.24: From left to right: Γ0, Γ2 and T1 for α = γ0 = γ2 < β.

Figure 6.25: Examples where Γ2 is not optimally sloped for α = γ0 = γ2 < β.

Note that δ > γ0 means that we have coef(c0) = − coef(c2), and thus the reduced system

−1 + ym2
1 yn2

2 + ym1
1 = coef(c0) + coef(c2)ym2

1 yn2
2 − coef(a3)ym3

1 yn3
2 = 0

with respect to v0 has at most two positive solutions. Moreover, a non-degenerate positive

solution (α, β) of the latter system satisfies

− 1 + αm1 + cn2
3 α(m2n3−n2(m3−m1))/n3 = 0 (6.6.6)

with coef(a3) < 0 and c3 = (−1/ coef(a3))1/n3 . Since (6.6.1) has six positive solutions with

valuation in C (by assumption), each of {v0}, {v} and
◦
E2 contains the valuations of at most

two positive solutions. Moreover, since m1 > 0, by Descartes’ rule of signs applied to (6.6.6),

we we have (m2n3 − n2(m3 −m1))/n3 < 0, and thus m2n3 − n2(m3 −m1) > 0. The latter

inequality together with m3n2 − m2n3 > 0 show that (m3, n3) belongs to the region F1

represented in Figure 6.26. Therefore, since α > 0, the tropical curve T1 does not have a

vertex in
◦
L1 ∪

◦
L2.
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Figure 6.26: The region F1.

This concludes the proof of Proposition 6.58 in the case where v ∈ L0.

• Second case: v ∈ L1. Recall that the reduced system with respect to v is

ym1
1 + ym2

1 yn2
2 + coef(a3)ym3

1 yn3
2 = ym1

1 + ym2
1 yn2

2 + coef(b4)ym4
1 yn4

2 = 0. (6.6.7)

Note that this system has positive solutions only if each of coef(a3) and coef(b4) is negative.

Similarly to the the case where v ∈ L0, we make a simple analysis on f0,t, f2,t and on the reduced

system of (6.6.3) with respect to v0. This analysis is based on the inequalities between α, β, γ0

and γ2. The cases from i) to iv) are the same that been considered in the case where v ∈ L0. The

entries in the following table represent the maximum number of positive solutions of (6.6.1) with

valuation in the associated cell of T1 ∩ T2.

Intersection Locus i) ii) iii) iv)

{v0} 0 1 2 3 | 2

E0 3 2 2 1 | 1

E2 2 2 1 1 | 2

We deduce that (6.6.1) has at most five positive solutions with valuation in C\v. Assume first

that T1 and T2 intersect transversally at a point p and that p is the valuation of a positive solution

of (6.6.1). Lemma 6.44 shows that p ∈ C0, thus from Proposition 6.27, we have that coef(a3) > 0

and coef(b4) > 0. Therefore (6.6.7) has no positive solutions, and consequently (6.6.1) has at most

five positive solutions in C.

Assume now that (6.6.7) has two positive solutions (thus coef(a3, coef(b4)) < 0, and if T1 and

T2 intersect transversally at p, it is not a valuation of a positive solution) and that the component

C \ {v} contains the valuations of five positive solutions. We prove that these assumptions give

a contradiction. Since the system (6.6.1) has five positive solutions with valuations in C \ {v},
then Γ0 and Γ2 are both optimally sloped. Therefore, from 0 < α < β, we deduce the inequalities

n4 < n3 and m4n2 −m2n4 < m3n2 −m2n3. Recall that the vertices of T1 and T2 in L1 have first

coordinates

αn2

(m3 −m1)n2 − (m2 −m1)n3
and

βn2

(m4 −m1)n2 − (m2 −m1)n4
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respectively, thus since v ∈ L1 is a common vertex to each of T1 and T2, the latter first coordinates

are equal. We deduce from 0 < α < β that

m4n2 −m2n4 − (m3n2 −m2n3) > m1(n3 − n4).

This is a contradiction to m1 > 0, n4 < n3 and m4n2 −m2n4 > m3n2 −m2n3.

This proves Proposition 6.58 in the case where v ∈ L1.

6.6.1.2 The origin of the base fan is the only intersection point of type (III)

Similarly to the the case where v ∈ L0, we make a simple analysis on f0,t, f2,t and on the reduced

system of (6.6.3) with respect to v0. This analysis is based on the inequalities between α, β, γ0

and γ2. The cases from i) to iv) are the same that been considered in the case where v ∈ L0.

The entries appearing in the following table represent the maximum number of positive solutions

of (6.6.1) with valuations in the associated cell of T1 ∩ T2.

Intersection Locus i) ii) iii) iv)

{v0} 0 1 2 3 | 2

E0 3 2 2 1 | 1

E2 2 2 1 1 | 2

Assume furthermore that (6.6.1) has the maximal number five of positive solutions with valu-

ations in
◦
E0 ∪

◦
E2 ∪ {v0}. Then Γ0 and Γ2 are both optimally sloped, and thus, since α < β, we

have

n4 < n3 and m4n2 −m2n4 < m3n2 −m2n3. (6.6.8)

These assumptions give the two following results.

Lemma 6.59. The tropical curve T1 has a vertex on L1 iff T2 has a vertex on L1.

Proof. We argue by contradiction. Assume first that T2 has a vertex v2 in L1 and T1 has no vertex

in the same 1-cone. Then the points (m3, n3) and (m4, n4) are situated on different sides of the

line L containing the points (0,m1) and (m2, n2) as shown in Figure 6.27.

Figure 6.27: The point (m4, n4) is not on the same side of L as (m3, n3)

This disposition gives the inequalities

(m2 −m1)n3 − (m3 −m1)n2 > 0 and (m2 −m1)n4 − (m4 −m1)n2 < 0,
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and thus we get m3n2 − m2n3 − (m4n2 − m2n4) < m1(n4 − n3). Moreover, since m1 > 0 and

n4 < n3, we get m3n2 −m2n3 < m4n2 −m2n4, a contradiction to (6.6.8).

Assume now that T1 has a vertex v1 in L1 and T2 has no vertex in the same 1-cone. The dispo-

sition of (m3, n3) and (m4, n4) with respect to L is the opposite of that represented in Figure 6.27.

Therefore, the point (m3, n3) belongs to C ∪D ∪E represented in Figure 6.19 (the point (m3, n3)

cannot be situated in G since otherwise T1 would not have a vertex v1 6= v0). Moreover, the only

way to have a transversal intersection in C1 and C2 is for T2 to have a vertex on L0 and L1, thus

(m4, n4) belongs to the region A of Figure 6.19. It turns out that if (m3, n3) belongs to any of

the three regions C, D and E, it cannot produce a transversal intersection point in C1 and C2

simultaneously (see Figure 6.28).

Figure 6.28: The left side represents T1∪T2 when (m3, n3) ∈ E and the right side represents
T1 ∪ T2 when (m3, n3) ∈ D.

Lemma 6.60. If T1 has a vertex v1 ∈
◦
L1 and T2 has a vertex v2 ∈

◦
L1, then the first coordinate of

v1 is smaller than that of v2.

Proof. Assume that the first coordinate of the vertex v1 ∈
◦
L1 of T1 is greater than that of v2 ∈

◦
L2

of T2, we prove that this gives a contradiction. Then these first coordinates satisfy

αn2

n2(m3 −m1)− n3(m2 −m1)
>

βn2

n2(m4 −m1)− n4(m2 −m1)
> 0.

Since 0 < α < β and m1 > 0, we have

n2(m4 −m1)− n4(m2 −m1) > n2(m3 −m1)− n3(m2 −m1) > 0.

The latter inequality induces m4n2 −m2n4 > m3n2 −m2n3, a contradiction to (6.6.8).

Recall that by assumption, the system (6.6.1) has five positive solutions with valuations in
◦
E0 ∪

◦
E2 ∪ {v0} and prove that this gives a contradiction. Assume furthermore that the curves T1

and T2 intersect transversally at p1 ∈ C1 and p2 ∈ C2. We consider two cases.

• First case: Assume that T1 has a vertex v1 ∈ L1. Then by Lemma 6.59, the tropical curve T2

has a vertex v2 in L1, and thus by Lemma 6.60, the first coordinate of v1 is smaller than that of

v2. Therefore, the transversal intersections p1 ∈
◦
C1 and p2 ∈

◦
C2 exist only if the point (m3, n3) is
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contained inside the triangle (m1, 0), (m2, n2) and (m4, n4) (see Figure 6.29). Such a restriction

gives the inequalities

(m3 −m1)n4 − (m4 −m1)n3 < 0 and (m3 −m2)(n4 − n2)− (m4 −m2)(n3 − n2) > 0,

, from which we deduce m4n2 −m2n4 −m3n2 +m2n3 > m1(n3 − n4). A contradiction to (6.6.8).

Figure 6.29: Location of (m3, n3) in order for T1 and T2 to have two transversal intersection
points.

• Second case: Assume now that T1 does not have a vertex in L1. Then Lemma 6.59 shows that

T2 does not have a vertex in L1. Note that since p1 ∈ C1 and p2 ∈ C2, each of T1 and T2 has

one edge in each of these 2-cones, and thus both (m3, n3) and (m4, n4) belong to the region A

represented in Figure 6.19. Therefore, we have the following inequalities

m4n2 −m2n4 < m3n2 −m2n3 < 0 and n4 < n3 < 0.

In what follows in this subsection, we make a case-by-case study on the reduced system with respect

to v0. We prove in each one of the following cases that (6.6.1) cannot have five non-degenerate

positive solutions with valuations in
◦
E0 ∪

◦
E2 ∪ {v0}, and two non-degenerate positive solutions,

each with valuation in p1 and p2. Recall that by assumption, each of Γ0 and Γ2 are both optimally

sloped.

i) Assume that there exists only one element of the set {α, γ0, γ2} that is equal to min(α, γ0, γ2).

Recall that the reduced system of (6.6.3) with respect to v0 has no real positive solutions.

Since Γ0 is optimally sloped, we have γ2 < γ0 < α < β (Γ0 in this case looks similar to

what is represented in Figure 6.20, where the only difference is that the dotted line does

not intersect the origin of the axis). Recall that n4 < n3 < 0 < n2 and by assumption both

coef(a3) and coef(b4) are negative, thus by Descartes’ rule of sign applied to f0,t, we have

coef(c2) > 0. Therefore, using the same rule on f2,t, we deduce that the latter polynomial

has at most one positive solution. Indeed, since m4n2 − m2n4 < m3n2 − m2n3 < 0 and

c = coef(c2) > 0. We conclude that (6.6.1) has at most one positive solution with valuation

in
◦
E2, and thus the latter system has at most four positive solutions with valuations in

◦
E0 ∪

◦
E2 ∪ {v0}, a contradiction.
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ii) Assume that γ0 = γ2 < α. Recall that the reduced system of (6.6.3) ( see the sys-

tem (6.4.15) in Subsection 6.4.3) with respect to v0 has at most one positive solution.

Since Γ0 contains an horizontal edge, each of
◦
E0 and

◦
E2 contains at most two positive

solutions. If coef(c0) = − coef(c2), then the reduced system of (6.6.3) has no positive so-

lutions and
◦
E0 ∪

◦
E2 ∪ {v0} has the valuations of at most four, and we are done. Assume

that the reduced system of (6.6.3) has one positive solution, then coef(c0) coef(c2) < 0.

Moreover, if
◦
E0 (resp.

◦
E2) contains the valuations of two positive solutions, then in or-

der for the two binomials of f0,t (resp. f2,t), associated to the edges with negative slope

of Γ0 (resp. Γ2), to have non-degenerate positive solutions, we have coef(c0) < 0 (resp.

c = coef(c2) − coef(c0) < 0). Indeed, since m4n2 − m2n4 < m3n2 − m2n3 < 0 and

n4 < n3 < 0. Therefore coef(c2) < coef(c0) < 0, a contradiction to coef(c0) coef(c2) < 0.

iii) Assume that α = γ0 < β < γ2 (for the case where α = γ2 < β < γ0 we proceed with

the same type of arguments as in iii) to find the same contradiction). Recall that the

reduced system of (6.6.3) (see the system (6.4.16) in Subsection 6.4.3) with respect to v0

has at most two positive solutions. Since n2 > 0 and α = γ0 < γ2, we have that Γ0 con-

tains only one edge with a negative slope (see Figure 6.23). Moreover, since δ = γ0 and

m4n2 − m2n4 < m3n2 − m2n3 < 0, then also Γ2 contains only one edge with negative

slope. Therefore
◦
E0 ∪

◦
E2 ∪ {v0} contains the valuations of at most four positive solutions,

a contradiction.

iv) Assume that α = γ0 = γ2 < β. Recall that the reduced system of 6.6.3 with respect to v0

(see (6.4.18) of Subsection 6.4.3) has at most three positive solutions. This system is sup-

ported on a circuit, where the point (0, 0) is contained in the triangle with vertices (m1, 0),

(m2, n2) and (m3, n3). Indeed, since from n3 < 0 and m3n2 − m2n3, the point (m3, n3)

is contained in region A represented in Figure 6.19. Therefore, (6.4.18) has at most two

positive solutions. Moreover, the relation α = γ0 = γ2 ≤ δ shows that each of Γ0 and Γ2

contains only one edge with negative slope such that the associated facial subpolynomials

is a binomial (see Figure 6.30). Therefore, C contains the valuation of at most four positive

solutions of (6.6.1), a contradiction.

or

Figure 6.30: Examples of Γ0 and Γ2 for α = γ0 = γ2 < β.
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We conclude that Theorem 6.57 is proved for 0 < α < β.

6.6.2 The case α = 0 < β

The tropical curve T1 has only one vertex v0, thus this vertex is the only non-transversal intersection

point of type (III) of T1 and T2. Moreover, the reduced system with respect to v0 is

−1 + ym1
1 + ym2

1 yn2
2 + coef(a3)ym3

1 yn3
2 = −1 + ym1

1 + ym2
1 yn2

2 = 0

and does not have non-zero solutions. Therefore, the valuation of any positive solution of (6.6.1)

is either a transversal intersection point of T1 and T2 or it is contained in a cell of type (I) that

belongs to a 1-cone of E . From α = 0, we deduce that T1 and T2 intersect transversally in at

most two points. Indeed, this comes from applying Lemma 6.22 on T2 since T1 has at most two

edges different from any 1-cone of E (see Figure 6.31). Therefore, since each f0,t and f2,t has at

most three and two positive solutions respectively, the system (6.6.1) cannot have more than seven

positive solutions.

Figure 6.31: If (m4, n4) belongs to the grey area, then T1 and T2 do not intersect transver-
sally at two points.

Assume that the latter system has seven positive solutions. We show that this gives a con-

tradiction. Then T1 and T2 intersect transversally at two points and
◦
E0 (resp.

◦
E2) contains the
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valuations of three (resp. two) non-degenerate positive solutions of (6.6.1). This shows that Γ0

and Γ2 are both optimally sloped, and thus, since α < min(γ0, γ2, β), we have n3 > max(n2, n4)

and m3n2 −m2n3 > max(0,m4n2 −m2n4). Therefore, the point (m3, n3) belongs to the region

D1,1 represented in Figure 6.37 (see page 143). This gives that the tropical curve T1 has one edge

belonging to each of
◦
C1 and

◦
C2 (see Figure 6.31). Hence, Proposition 6.27 implies that, since

coef(a2) = 1 and T1 intersects T2 at two transversal points which are valuations of positive solu-

tions of (6.6.1), we have coef(a3) < 0 and coef(b4) < 0. Therefore, Descartes’ rule of sign applied

to f2,t, which has three positive solutions, shows that 0 < m4n2−m2n4 < m3n2−m2n3. Then we

get δ > β > α, and from γ0 > γ2 > β > α, we deduce that n2 < n4 < n3. Fixing (m3, n3) in the

region D1,1 represented in Figure 6.37, we deduce that (m4, n4) belongs to the grey region shown

in Figure 6.31. Moreover, since the first coordinate of the vertex v2 ∈ L1 of T2 is positive (see

Figure 6.31), the curves T1 and T2 intersect transversally in at most one point, a contradiction.

6.6.3 The case α < 0 < β.

Since α < 0, the tropical curve T1 does not have a vertex at the origin v0 of E , and thus there does

not exist a non-transversal tropical intersection point in this origin.

Assume first that T1 and T2 intersect non-transversally at a cell E0 of type (I) in L0 and that

the latter curves do not intersect non-transversally in a cell of type (I) in L2. If there exists a

non-transversal intersection point v contained in any 1-cone of E , then Theorem 6.57 is proved

for α < 0 < β. Indeed, Remark 6.42 of Subsection 6.4.4 shows that the reduced system with

respect to v has at most two positive solutions. Moreover, Lemma 6.44 from the same Subsection

shows that there exists at most one transversal intersection p. Therefore, the system (6.6.1) has at

most one (resp. two, three) positive solutions with valuation in p (resp. v,
◦
E0), and we are done.

Theorem 6.57 comes as a consequence of Theorem 6.15 also in the case where there does not exist

such v.

In what follows in this Subsection we assume that T1 and T2 intersect non-transversally in two

cells E0 ⊂ L0 and E2 ⊂ L2 of type (I).

6.6.3.1 There exists a non-transversal intersection of type (III)

Then this non-transversal intersection point v of type (III) is contained in the 1-cone L1. Indeed,

since otherwise one of E0 or E2 would not exist (see Figure 6.32 for example).

Figure 6.32: When α < 0 < β, if v ∈ L0, then there does not exist a cell of type (I) in L0.

Since v ∈ L1 is the common vertex of T1 and T2 that has a positive first coordinate, and
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α < 0 < β, we deduce

n2(m3 −m1)− n3(m2 −m1) < 0 and n2(m4 −m1)− n4(m2 −m1) > 0.

Computing the difference we get

m4n2 −m2n4 − (m3n2 −m2n3) > m1(n3 − n4), (6.6.9)

and thus, since m1 > 0, we have n4 < n3 ⇒ m3n2 − m2n3 < m4n2 − m2n4. Moreover, since

α < 0 < β, if n3 < n4 (resp. m3n2 − m2n3 < m4n2 − m2n4), then
◦
E0 (resp.

◦
E2) contains the

valuations of at most two (resp. one) positive solution. Indeed, the lower hull Γ0 (resp. Γ2) has at

least one edge with non-negative slope (see Figure 6.33 for an example), and thus is not optimally

sloped.

Figure 6.33: Examples of Γ0 and Γ2 not being optimally sloped for α < 0 < β.

Therefore,
◦
E0∪

◦
E2 cannot contain the valuations of more than four positive solutions. Lemma 6.44

shows that there can exist at most one positive transversal intersection that can be contained only

in
◦
C0.

Assume first that T1 and T2 intersect transversally at a point p ∈
◦
C0 and (6.6.1) has a positive

solution with valuation p. Then, since coef(a0) = −1, Proposition 6.27 shows that both coef(a3)

and coef(b4) are positive. Therefore, the system

ym1
1 + ym2

1 yn2
2 + coef(a3)ym3

1 yn3
2 = ym1

1 + ym2
1 yn2

2 + coef(b4)ym4
1 yn4

2 = 0. (6.6.10)

does not have positive solutions, and thus (6.6.1) has at most five positive solutions.

Assume now that both coef(a3) and coef(b4) are negative. Then by Proposition 6.27, the

system (6.6.1) does not have a positive solution with valuation in
◦
C0. Moreover, the system (6.6.10)

has at most two positive solutions. Therefore, the system (6.6.1) has at most six positive solutions.

6.6.3.2 There does not exist an intersection point of type (III)

Recall that by assumption, we have E0 ⊂ L0 and E2 ⊂ L2. This means that, since α < 0, the

tropical curve T1 has one vertex in L0 and one vertex in L2. Therefore the point (m3, n3) is

contained in the region D ∪ G represented in Figure 6.19, where n3 > 0 and m3n2 −m2n3 > 0.

If (6.6.1) has more than six positive solutions in total, then T1 and T2 intersect transversally in at

least two points. Indeed, since the only other solutions have valuations contained in
◦
E0∪

◦
E2, where

the latter contains the valuations of at most five non-degenerate positive solutions of (6.6.1).
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We prove Theorem 6.57 by contradiction. Assume that (6.6.1) has five positive solutions with

valuations in
◦
E0 ∪

◦
E2 and two positive ones with valuations transversal intersections p1 and p2.

Recall that coef(a0) = −1 and coef(a2) = 1. Then from Proposition 6.27, we have p1 ∈ C1 and

p2 ∈ C2, so that both coef(a3) and coef(b4) are negative. Since
◦
E2 contains the valuations of two

non-degenerate positive solutions of (6.6.1) (by assumption), both edges of Γ2 have negative slopes.

Moreover, Descartes’ rule of sign applied to f2,t shows that since coef(a3) coef(b4) > 0, we have

0 < m4n2 −m2n4 < m3n2 −m2n3 and thus δ > β (see Figure 6.34). Note that, since
◦
E0 contains

the valuations of three positive solutions of (6.6.1), all the edges of Γ0 have negative slopes, and

thus γ0 > γ2 (recall that n2 > 0). From α < 0 < β < γ2 < γ0, we deduce that 0 < n2 < n4 < n3.

Figure 6.34: Examples of optimally sloped Γ0 and Γ2 for α < 0 < β.

Figure 6.35: If (m4, n4) belongs to the grey region, then T1 does not intersect T2 at two
transversal intersection points.

We deduce that the points (m3, n3) and (m4, n4) are contained in the region D1,1 represented

in Figure 6.37 (see page 143). Indeed, since for i = 3, 4, we have 0 < n2 < ni and min2 −m2ni >
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0 > m1(n2 − ni). Moreover, since α < 0 and β > 0, the tropical curve T1 does not have a vertex

in L1, and the only vertices of T2 are v0 (the origin of E) and v2 ∈ L1. Recall that n4 < n3 and

m4n2 −m2n4 < m3n2 −m2n3, thus fixing (m3, n3) in the region D1,1 represented in Figure 6.37,

the point (m4, n4) belongs to the grey region appearing in Figure 6.35. We deduce that if (m4, n4)

belongs to the grey region, the curves T1 and T2 do not intersect transversally in each of C1 and

C2, a contradiction.

6.6.4 The case α < 0 and β = 0

The tropical curve T2 has only one vertex in the origin of E , thus T1 and T2 do not intersect non-

transversally in points of type (III). We prove Theorem 6.57 by contradiction. Similarly to the

case α = 0 and β > 0, we assume that (6.6.1) has seven positive solutions such that two of them

have valuations which are transversal intersections and
◦
E0 (resp.

◦
E2) contains the valuations of

three (resp. two) non-degenerate positive solutions. Since each of Γ0 and Γ2 are optimally sloped,

we have n2 < n4 < n3, γ0 > γ2 > β > α and 0 < m4n2 −m2n4 < m3n2 −m2n3. Theorem 6.57

then is proved by applying similar arguments used in the case where α = 0 and β > 0.

6.6.5 The case α < β < 0.

Using the same arguments as in the case α < 0 < β, we assume in what follows in this subsection

that T1 and T2 intersect non-transversally at cells E0 ∈ L0 and E2 ∈ L2 of type (I). Since E
is a base fan of T1 (resp. T2) and α < 0 (resp. β < 0), the latter assumption means that

T1 (resp. T2) has a vertex on each of L0 and L2. Therefore, we have 0 < min(n3, n4) and

0 < min(m3n2 −m2n3,m4n2 −m2n4).

6.6.5.1 There exists a non-transversal intersection point of type (III)

We distinguish two cases for a non-transversal intersection point v of type (III).

• First case: v ∈ L1. Then, both (m3, n3) and (m4, n4) are contained in the region G represented

in Figure 6.19. Indeed, since both α and β are negative and E0 ⊂
◦
L0, E2 ⊂

◦
L2, v ∈

◦
L1, each of T1

and T2 has a vertex in the relative interior of each 1-cone of E .

Theorem 6.57 becomes trivial if coef(a3) or coef(b4) is positive. Indeed, otherwise the reduced

system (6.6.10) with respect to v would not have positive solutions. Moreover, by Lemma 6.44,

the curves T1 and T2 intersect transversally in at most one point. Therefore, since
◦
E0 (resp.

◦
E2)

contains the valuations of at most three (resp. two) positive solutions, the total number of positive

solutions of (6.6.1) is at most six.

Assume that both coef(a3) and coef(b4) are negative. In what follows, we assume that (6.6.1)

has more than six positive solutions and prove that this gives a contradiction. Lemma 6.44 shows

that if T1 and T2 intersect transversally in a point p0 (which is the maximal number of such inter-

section points), then p0 is contained in C0. However Proposition 6.27 shows that since coef(a3) < 0,

coef(b4) < 0, coef(a0) = −1 and coef(b0) = −1, this point p0 is not the valuation of a positive so-

lution of (6.6.1). Therefore, the only possible way for (6.6.1) to have more than six non-degenerate

positive solutions, is for it to have seven non-degenerate positive solutions satisfying that
◦
E0 (resp.

◦
E2, {v}) contains the valuation of three (resp. two, two) positive solutions. This shows that

Γ0 and Γ2 are both optimally sloped, and since α < β < 0, we have 0 < n2 < n4 < n3 and

0 < m4n2 −m2n4 < m3n2 −m2n3. However this contradicts the fact that both of (m3, n3) and
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(m4, n4) are contained in the region G represented in Figure 6.19, and we are done.

• Second case: v ∈ L0. We have n4α = n3β (a vertex of T1 coincides with a vertex of T2, both

in
◦
L0), and since α < β < 0 and 0 < min(n3, n4), we get 0 < n4 < n3. Moreover, since both γ0 and

γ2 are positive, from Remark 6.36, the lower hull Γ0 contains an edge e1 adjacent to the points

(n4, β), (n3, α), and with negative slope (c.f. Figure 6.36).

Figure 6.36: Examples of Γ0 for α < β < 0.

The facial subpolynomial f
(1)
0 (y) = − coef(a3)yn3 + coef(b4)yn4 (which is associated to e1)

is obtained from f0,t(t
−λ1y)/tµ1 , where λ1 = β/n4 and µ1 = 0. Therefore, by Corollary 6.12 of

Section 6.2, if y0 is a largely ordered positive root of f0,t, then coef(y0) is not a positive root

of f
(1)
0 . This shows that

◦
E0 contains the valuations of at most two positive solutions of (6.6.1).

Moreover, if the latter system has two positive solutions with valuations in
◦
E0, then 0 < n2 < n4.

Indeed, otherwise the point (n2, γ2) is not a vertex of Γ0, or Γ0 has an edge with positive slope

(c.f. Figure 6.36 the center and right).

Recall that since v ∈
◦
L0, if the reduced system with respect to v has positive solutions, then

their number is equal to that of the positive ones of

− 1 + ym1 + d3y
m3n4−m4n3

n4−n3 = 0. (6.6.11)

Note that by Lemma 6.44, the curves T1 and T2 intersect transversally in at most one point, and

if such intersection point exists, it is contained in
◦
C2. We assume that (6.6.1) has more than

six positive solutions and prove that this gives a contradiction. Then (6.6.1) has six positive

solutions with valuations in
◦
E0 ∪

◦
E2 ∪ {v} (which is the maximum number) and one positive

solution with valuation a transversal intersection p ∈
◦
C2. We deduce from the latter condition and

Proposition 6.27 that both coef(a3) and coef(b4) are negative. Moreover, since α < β < 0 and each

of
◦
E0 and

◦
E2 contains the valuations of two positive solutions (which is the maximum), we deduce

0 < n2 < n4 < n3 and 0 < m4n2 −m2n4 < m3n2 −m2n3. Since d3 has the same sign as coef(a3)

(c.f. (6.4.25)), and (6.6.11) has the maximal number two of positive solutions, by Descartes’ rule

of signs we have (m3n4 −m4n3)/(n4 − n3) > 0, which together with 0 < n4 < n3 implies that

m3n4 −m4n3 < m1(n4 − n3) < 0. (6.6.12)

Therefore, the points (m3, n3) and (m4, n4) are contained in the region D1,1 represented in Fig-

ure 6.37, thus fixing (m3, n3) in the region D1,1, we deduce that (m4, n4) belongs to the region

D1,2 represented in Figure 6.37.



143 Chapter 6. Constructing polynomial systems

Figure 6.37: On the left: Region D1,1, and on the right: Region D1,2.

Therefore, if there is a transversal intersection point in C2, then the first coordinate of the

vertex v1 ∈ L2 of T1 is bigger than that of the vertex v2 ∈ L2 of T2 (See Figure 6.38).

Figure 6.38: The curves T1 and T2 for 0 < α < β.

This means that β
m4n2−m2n4

< α
m3n2−m2n3

. Finally, recall that αn4 = βn3, therefore we get

m3n4 > m4n3, a contradiction to (6.6.12).

6.6.5.2 There does not exist an intersection point of type (III)

Assume that (6.6.1) has more than six positive solutions, we prove that this leads to a contradiction.

Then it has five positive solutions with valuation in
◦
E0 ∪

◦
E2 (which is the maximal number) and

T1, T2 intersect transversally in two points p1 and p2 so that each one is the valuation of a positive

solution. Since coef(a0) = coef(b0) < 0 and coef(a2) = coef(b2) > 0, Proposition 6.27 shows that

p1 ∈ C1 and p2 ∈ C2.

Recall that 0 < min(n3, n4) and 0 < min(m3n2 −m2n3,m4n2 −m2n4). Since α < β < 0 <

min(γ0, γ2) and each of
◦
E0 and

◦
E2 contains the valuations of respectively three and two positive

solutions of (6.6.1), we have

0 < n2 < n4 < n3 and 0 < m4n2 −m2n4 < m3n2 −m2n3. (6.6.13)

Indeed, since each of Γ0 and Γ2 are optimally sloped (see Figure 6.39 for an example).
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Figure 6.39: The graphs Γ0 and Γ2, having three edges with negative slope for 0 < α < β.

Therefore, from Remark 6.36 of Subsection 6.4.1, the lower hull Γ2 (resp. Γ0) has an edge ẽ1

(resp. e1) with negative slope n2(α−β)/ ((m3 −m4)n2 − (n3 − n4)m2) (resp. (α−β)/(n3−n4)).

The facial subpolynomial f
(1)
2 (y) (resp. f

(1)
0 (y)), which is associated to ẽ1 (resp. e1), is obtained

from f2,t(t
−λ̃1y)/tµ̃1 (resp. f0,t(t

−λ1y)/tµ1), where

λ̃1 =
(α− β)n2

(m3 −m4)n2 − (n3 − n4)m2
and µ̃1 =

(m3n2 −m2n3)α− (m4n2 −m2n4)β

(m3 −m4)n2 − (n3 − n4)m2

(resp. λ1 = (α − β)/(n3 − n4) and µ1 = (n3β − n4α)/(n3 − n4)). Moreover, since all roots of

f0,t and f0,t are largely ordered, we have that both µ1 and µ̃1 are positive. From α < β < 0,

µ1, m̃u1 > 0 and the inequalities in (6.6.13), we deduce the inequalities

α

n3
<

β

n4
and

α

m3n2 −m2n3
<

β

m4n2 −m2n4
. (6.6.14)

Also from the inequalities appearing in (6.6.13), the curve T1 (resp. T2) has two vertices v1 ∈
◦
L0

and ṽ1 ∈
◦
L2 (resp. v2 ∈

◦
L0 and ṽ2 ∈

◦
L2). Therefore, from the inequalities of (6.6.14), the second

coordinate of v1 is smaller than that of the vertex v2 and the first coordinate of the vertex ṽ1 is

smaller than that of the vertex ṽ2 (see Figure 6.40).

Moreover, from inequalities appearing in (6.6.13), we deduce that the point (m3, n3) belongs

to the region D1,1 of Figure 6.37, and that fixing the latter point in the region D1,1, the point

(m4, n4) belongs to the grey region represented in Figure 6.40. However with (m4, n4) anywhere

in the latter region, T1 and T2 do not intersect transversally at more than one point (see right side

of Figure 6.40 for an example).



145 Chapter 6. Constructing polynomial systems

Figure 6.40: If (m4, n4) belongs to the grey region, then the curves T1 and T2 intersect in
at most one transversal point.

6.6.6 The case α = β < 0.

The lower hulls Γ0 and Γ2 have one horizontal edge each, and thus
◦
E0∪

◦
E2 contains the valuations

of at most three positive solutions. Therefore, applying the same arguments as in the case where

α < β < 0, we deduce Theorem 6.57.

6.7 Proof of Theorem 6.3 (part 2).

Consider the highly non-degenerate normalized system

a0 + ym1
1 + a2y

m2
1 yn2

2 + a3t
αym3

1 yn3
2 = 0,

b0 + ym1
1 + b2y

m2
1 yn2

2 + b4t
βym4

1 yn4
2 = 0.

(6.7.1)

In this Section, we prove the following result.

Theorem 6.61. If αβ 6= 0, coef(a0)/ coef(b0) 6= coef(a2)/ coef(b2) and coef(ai) 6= coef(bi) for

i = 0, 2, then (6.6.1) cannot have more than six positive solutions.

Since coef(ai) 6= coef(bi) for i = 1, 2, no positive solution of (6.7.1) can have valuation in a

non-transversal cell of type (I). Indeed, if T1 and T2 intersect non-transversally at a cell E0 of

type (I) contained in, say L0, then the reduced system with respect to E0 is coef(a0) + ym1
1 =

coef(b0) + ym1
1 = 0, which does not have any solutions. Therefore, the valuation of each positive

solution is contained in one of the following.

- Non-transversal intersection point of type (III), which can either be v0 or v ∈ Li for some

i ∈ {0, 1, 2}.

- Non-transversal intersection point of type (II).

- Transversal intersection point.

In what follows, we assume the hypotheses of Theorem 6.61.
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6.7.1 The case 0 < α ≤ β

Recall that there exists a non-transversal intersection point v0 of type (III), which is the origin of E .

From Subsection 6.4.3, the inequalities on coef(ai) and coef(bi) for i = 0, 2 show that the reduced

system of (6.7.1) with respect to v0 has at most one positive solution. To prove Theorem 6.61

when 0 < α < β, we distinguish two cases.

6.7.1.1 There exists a non-transversal intersection point of type (III)

Without loss of generality, we may assume that the non-transversal intersection point of type (III)

v 6= v0 is contained in L0. Recall from Subsection 6.4.4 that the reduced system with respect to

v is a system supported on four points, thus it has at most three positive solutions. Moreover,

the curves T1 and T2 intersect in at most two points of type (II) (see Figure 6.41 for example).

Recall that by Lemma 6.44, the curves T1 and T2 have at most one transversal intersection point.

Therefore, the system (6.7.1) cannot have more than seven positive solutions, and if there exists

seven positive solutions, then their valuations are distributed in the following way. Three positive

solutions with valuation v ∈
◦
L0, one positive solution with valuation v0, one positive solution with

valuation a transversal intersection point p ∈ C2 (by Lemma 6.44 since v ∈
◦
L0) and two positive

solutions where each has valuation a non-transversal intersection point of type (II) v1 ∈
◦
L1 and

v2 ∈
◦
L2 respectively. However, these conditions cannot be met at the same time (c.f. Figure 6.41).

Indeed, since the existence of the intersection points v ∈
◦
L0, v1 ∈

◦
L1 and v2 ∈

◦
L2 shows that

(m3, n3) (resp. (m4, n4)) is contained in region A (resp. E) of Figure 6.19 or vice-versa, and in

both cases, the intersection p would not exist.

Figure 6.41: With (m3, n3) ∈ A and (m4, n4) ∈ E, we have that T1 and T2 cannot intersect
transversally.

6.7.1.2 There does not exist an intersection point of type (III)

Then there exists at most two (resp. three) transversal (resp. non-transversal) intersection points

(resp. of type (II)) and together with v0, this makes at most six positive solutions of (6.7.1).
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6.7.2 The case α < 0 < β

There does not exist a non-transversal intersection point at the origin of E . To prove Theorem 6.61,

we distinguish two cases.

6.7.2.1 There exists a non-transversal intersection of type (III)

There can be at most three non-transversal intersection points of type (II) (see Figure 6.42 on

the left for an example) and at most one transversal intersection (c.f. Lemma 6.44). Without

loss of generality, we may assume that the non-transversal intersection point of type (III) v is

contained in L0. Assume that (6.7.1) has more than six positive solutions, we prove that this gives

a contradiction. The only way to have more than six positive solutions is to have seven ones such

that their valuations are distributed in the folloing way. Three positive solutions with valuation

v ∈ L0, one positive solution with valuation a transversal intersection point p ∈ C2 (by Lemma 6.44

since v ∈ L0) and three positive solutions where each has valuation a non-transversal intersection

point of type (II).

The existence of such v and p means that T2 has a vertex in L0 and an edge in C2, and since

β > 0, we have that the point (m4, n4) is contained in the region A or E of Figure 6.19, say in E.

Moreover, since T1 and T2 have three non-transversal intersection points of type (II) and α < 0,

the tropical curve T1 has one vertex on each 1-cone of E (see Figure 6.42), and thus the point

(m3, n3) is contained in the region G.

Figure 6.42: When α < 0 < β, if T1 intersects T2 at five points of type (II), then the point
(m3, n3) belongs to the triangle [w0, w1, w2].

Since (m3, n3) ∈ G and (m4, n4) ∈ E, necessary conditions to have three non-transversal intersec-

tion points of type (II) is that the first coordinate of the vertex v1 ∈ L1 of T1 is less than the first

coordinate of the vertex v2 ∈ L1 of T2 (see Figure 6.42). Indeed, otherwise there would only be

one non-transversal intersection point of type (II) in L2 (see Figure 6.42). However, if there exist

two non-transversal intersection points of type (II) in L1, then there does not exist a transversal

intersection point in C2 (see Figure 6.42 on the left). Conversely, if there exists a transversal inter-

section point in C2, then there do not exist two non-transversal intersection points of type (II) in

L1 (see Figure 6.42 on the right). The incompatibility of these conditions gives the contradiction.
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6.7.2.2 There does not exist an intersection point of type (III)

Since α < 0 < β, the tropical curves T1 and T2 have respectively three and two vertices in the union

of the 1-cones of E . Therefore, there exists up to five non-transversal intersection points of type (II)

and at most two transversal intersection points (see Figure 6.43). Using similar arguments to the

case were there was an intersection of type (III), we deduce that the existence of five non-transversal

intersection points of type (II) implies that there does not exist two transversal ones.

Figure 6.43: The curves T1 and T2 intersect in at most three non-transversal points of
type (II).

6.7.3 The case α ≤ β < 0

There does not exist a non-transversal intersection point at the origin of E . The proof of Theo-

rem 6.61 comes easily whether there exists or not a non-transversal intersection point v of type (III).

Indeed, if there exists v which is the valuation of at most three positive solutions of (6.7.1), then

there exists at most two non-transversal intersection points of type (II) and at most one transversal

intersection point (Lemma 6.44). Otherwise, the number of transversal and non-transversal of type

(II) intersection points is at most two and three respectively.
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[MR05] Grigory Mikhalkin and Johannes Rau. Tropical geometry. Book in preparation,

1(38):343, 2005.

[MS15] Diane Maclagan and Bernd Sturmfels. Introduction to tropical geometry, volume 161.

American Mathematical Soc., 2015.

[OP13] Brian Osserman and Sam Payne. Lifting tropical intersections. Documenta Mathemat-

ica, 18:121–175, 2013.

[Ore03] Stepan Yu. Orevkov. Riemann existence theorem and construction of real algebraic

curves. Ann. Fac. Sci. Toulouse Math. (6), 12(4):517–531, 2003.

[PR13] Kaitlyn Phillipson and Jean-Maurice Rojas. Fewnomial systems with many roots, and

an adelic tau conjecture. In Tropical and non-Archimedean geometry, volume 605 of

Contemp. Math., pages 45–71. Amer. Math. Soc., Providence, RI, 2013.

[Rab12] Joseph Rabinoff. Tropical analytic geometry, newton polygons, and tropical intersec-

tions. Advances in Mathematics, 229(6):3192–3255, 2012.

[Ren15] Arthur Renaudineau. Constructions de surfaces algébriques réelles. PhD thesis, Paris
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Introduction (en Français)

L’un des problèmes fondamentaux en mathématiques est de résoudre des équations polynomiales

réelles puisque les systèmes polynomiaux apparaissent naturellement et de manière omniprésente

en mathématiques et dans beaucoup de ses applications. On les voit apparaitre dans des domaines

tels que la théorie du contrôle [Byr89], cinématique [BR90], chimie [GH02, MFR+16] et beaucoup

d’autres où c’est principalement les solutions réelles qui comptent. Dans cette introduction, nous

donnons un bref aperçu sur la résolution des équations polynomiales et nous précisons les résultats

principaux de cette thèse. Pour un exposé plus détaillé sur la résolution des équations polynomiales,

voir par exemple [Sot11] ou [Stu02].

7.1 Polynômes en une variable

La théorie de Galois montre que pour un polynôme f à une variable en coefficients réels et degré

inférieur ou égal à quatre, il existe une formule générale qui détermine explicitement les racines

complexes de f en fonction de ses coefficients. Toutefois, cette affirmation est fausse si f a un

degré supérieur à quatre. Cela signifie que le calcul des racines des polynômes en degré élevé n’est

pas une tâche facile. Néanmoins, il existe de nombreuses méthodes et des résultats consacrés en

particulier à ce problème (voir par exemple [Stu02]). Selon le Théorème fondamental d’algèbre,

tout polynôme f en une variable admet au moins une racine complexe. En outre, le nombre de ses

racines complexes (comptés avec multiplicités) est égale à son degré.

Malheureusement, le degré en général n’est pas la meilleure estimation du nombre de racines

réelles de f , par exemple 1− x100 admet 98 racines non réelles et seulement deux réelles. La règle

de Descartes [Des97], qui remonte à 1637, est l’un des premiers résultats qui donne une estimation

plus précise du nombre de racines réelles de f . Écrivons les termes de f en respectant l’ordre

croissant de leurs exposants,

f(x) = b0x
k0 + b1x

k1 + · · ·+ bmx
km , (7.1.1)

où bi 6= 0 et k0 < · · · < km.

Théorème 7.1 (Règle de Descartes). Le nombre r de racines positives isolées de f , comptées avec

multiplicités, est au plus le nombre de changements de signe de ses coefficients,

r ≤ {i | 1 ≤ i ≤ m and bi−1bi < 0}.
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Théorème 7.1 est toujours vrai pour les polynômes en une variable avec des exposants réels. La

conséquence immédiate de cette règle est que le nombre de solutions positives de f est majoré par

m. En outre, en remplaçant x par −x et en appliquant Théorème 7.1 au polynôme obtenu donne

une estimation similaire pour le nombre de racines négatives de f . Par conséquent, le nombre de

racines réelles non nulles de f est inférieur ou égal à 2m.

Il est important de noter que la règle de Descartes, et donc la borne qui en résulte, est

indépendante du degré. Cela amène naturellement à la question de généraliser Théorème 7.1

pour un système polynomial.

7.2 Systèmes polynomiaux creux

Considérons un système polynomial réel

f1(z1, . . . , zn) = · · · = fn(z1, . . . , zn) = 0. (7.2.1)

En général, nous cherchons des solutions de (7.2.1) dans le tore complexe (C∗)n puisque les so-

lutions dans les hyperplans de coordonnées sont des solutions dans des tores complexes de plus

petites dimensions de systèmes tronqués. Une solution ζ de (7.2.1) est non dégénérée si les

différentielles en ζ des fonctions définissant le système sont linéairement indépendantes. Les so-

lutions non dégénérées sont plus faciles à manipuler puisque leur nombre ne diminuera pas après

“petite” perturbation des coefficients du système associé.

7.2.1 Bornes polyédrales

Notons di le degré de fi. Le Théorème fondamental de Bézout [Béz79] affirme que le nombre

de solutions complexes non dégénérées de (7.2.2) est inférieur ou égal à d1 · · · dn. En outre, cette

borne est exacte. Les systèmes polynomiaux qui se produisent naturellement peuvent avoir une

structure particulière, par exemple en termes de disposition des vecteurs d’exposants ou leur nom-

bre (voir [Sot11]). Cependant, une grande partie de ces données combinatoires est négligée lors de

l’utilisation du degré pour majorer le nombre de solutions complexes, et donc la borne de Bézout

peut être grossière. En effet, il existe des bornes qui dépendent de la structure polyédrale associée

au système polynomial.

À tout w = (w1, . . . , wn) ∈ Zn, on associe un monôme zw ∈ R[z±1
1 , . . . , z±1

n ]. Considérons un

polynôme de Laurent f ∈ R[z±1
1 , . . . , z±1

n ] qui s’écrit ainsi

f(z) :=
∑
w∈W

cwz
w, (7.2.2)

où cw 6= 0 pour tout w ∈ W. L’ensemble W est appelé le support de f . Le support d’un

système (7.2.1) est l’union des supports de f1, . . . , fn. Le polytope de Newton de f est

l’enveloppe convexe ∆W de W. Notons par Vol(∆) le volume Euclidien d’un polytope ∆ ⊂ Rn.

Nous avons le résultat fondamental suivant dû à A. Kushnirenko [Kus75].

Théorème 7.2 (Kushnirenko). Si (7.2.1) admet W pour support, alors il a au plus n! Vol(∆W)

solutions isolées dans (C∗)n, et exactement ce nombre si (7.2.1) est générique parmi les systèmes

de support W.

D. N. Bernstein [Ber75] affina ce résultat en prenant les supports individuels en compte.

Désignons parWi le support du polynôme fi apparaissant dans (7.2.1). La somme de Minkowski
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des enveloppes convexes des Wi pour i = 1, . . . , n, est la somme

∆W1
+ · · ·+ ∆Wn

= {w1 + · · ·+ wn | w1 ∈ ∆W1
, . . . , wn ∈ ∆Wn

}.

Minkowski (voir [Ewa12]) a montré qu’étant donnés des objets convexes K1, . . . ,Kn dans Rn et

des nombres positifs λ1, . . . , λn, la fonction Vol(λ1K1 + · · · + λnKn) est un polynôme homogène

en λ1, . . . , λn de degré n. Donc il existe des coefficients V (Ki1 , . . . ,Kin) pour i1, . . . , in ∈ [n] tels

que

Vol(λ1K1 + · · ·+ λnKn) =
∑

i1,...,in ∈[n]

V (Ki1 , . . . ,Kin)λi1 · · ·λin . (7.2.3)

Le volume mixte MV(K1, . . . ,Kn) de K1, . . . ,Kn est égal à V (K1, . . . ,Kn). On donne main-

tenant la généralisation faite par Bernstein du Théorème de Kushnirenko.

Théorème 7.3 (Bernstein). Un système de n polynômes en n variables dont les supports sont

W1, . . . ,Wn admet au plus MV (∆W1 , . . . ,∆Wn) solutions isolées dans (C∗)n, et exactement ce

nombre lorsque les polynômes sont génériques pour leurs supports donnés.

Il est important de noter qu’une solution non dégénérée d’un système est une solution isolée.

Les théorèmes de Kuschnirenko et de Bernstein donnent des majorations optimales pour le nombre

de solutions non-dégénérées dans (C∗)n d’un système polynomial. Bien que le degré et les bornes

polyédrales précédentes sont aussi valables pour le nombre de solutions non-dégénérées dans (R∗)n,

les bornes résultantes ne sont pas toujours optimales. Cela se produit généralement lorsque le

support total W de (7.2.1) admet peu d’éléments relativement à ∆W ∩ Zn.

7.2.2 Bornes Fewnomiales

Notons par W ⊂ Rn le support de (7.2.1). Les généralisations multivariées de la borne de

Descartes (Théorème 7.1) pour les systèmes polynomiaux multivariés sont appelés bornes Fewno-

miales1. Une attention particulière est portée aux solutions positives de (7.2.1), qui sont les solu-

tions contenues dans l’orthant positif de Rn. En effet, supposons qu’il existe une borne supérieure

optimale NW sur le nombre de solutions positives non dégénérées de (7.2.1) qui ne dépend que de

W. Alors NW majore aussi le nombre de solutions contenus dans tout autre orthant, et donc (7.2.1)

n’aura pas plus que 2nNW solutions dans (R∗)n. Rappelons que Descartes a montré que nous avons

NW = |W| − 1 pour n = 1, mais encore, avant le livre de Khovanskii [Kho91], ce n’était pas clair

qu’un tel NW existe pour n ≥ 2.

Théorème 7.4 (Khovanskii). Un système de n polynômes réels en n variables et comprenant

n+ k + 1 monômes distincts a moins que

2(n+k
2 )(n+ 1)n+k. (7.2.4)

solutions positives non dégénérées.

L’existence d’une borne sur le nombre de solutions positives non dégénérées qui est indépendante

des degrés des polynômes était révolutionnaire et est le point central du résultat de Khovanskii.

1Le terme “Fewnomial” a été inventé par A. Kushnirenko, où il a remplacé le terme “poly” du mot
“polynomial”, par le terme “Few” (voir [Kus08])
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Elle confirme également le principe de Kushnirenko que la complexité topologique d’objets définis

par des polynômes à coefficients réels peut être contrôlé par la complexité de la définition de ces

polynômes plutôt que par les degrés ou polyèdres de Newton associés aux équations.

En outre, la borne du Théorème 7.4 n’est pas optimale. En fait Théorème 7.4 est un cas

particulier d’un résultat plus général de Khovanskii concernant des solutions dans Rn de fonctions

polynomiales en logarithmes des coordonnées et des monômes (voir [Kho91]). Par exemple, lorsque

k = 0, le support W du système est un simplexe, et il y aura au plus une solution réelle. Bien

qu’il ait été communément admis que la borne de Khovanskii (7.2.4) était loin d’être optimale, il

s’avère que la tâche d’améliorer cette borne n’est pas facile.

La théorie des Fewnomials a été principalement initiée par la célèbre conjecture de Kushnirenko

qui a été formulée à la fin des années soixante-dix comme une tentative de généraliser la borne de

Descartes.

Conjecture 7.1 (Kushnirenko). Un système de n polynômes réels en n variables, dont les polynômes

ont supports W1, . . . ,Wn, admet au plus

n∏
i=1

(|Wi| − 1)

solutions positives non dégénérées.

Ce n’est pas une tâche difficile de construire des systèmes polynomiaux atteignant la borne

conjecturée par Kushnirenko. Notamment, une telle construction pourrait être par exemple un

système

gi(zi) = 0, pour i = 1, . . . , n

comprenant des polynômes en une variable, où chaque gi admet mi termes et mi − 1 solutions

positives non dégénérées (borne de Descartes). En fait, le manque de méthodes de construction

efficaces a probablement incité Kushnirenko à établir sa conjecture.

7.3 Résultats avant la thèse

Après le fameux Théorème de Khovanskii, de nombreuses contributions récentes consacrées à

la théorie des Fewnomials ont eu lieu, (voir [Sot11] pour une enquête). Dans cette section, nous

donnons juste quelques résultats parmi des nombreux autres développés dans ce millénaire. La

plupart de ces résultats seront ensuite étudiés et dans certains cas améliorés dans cette thèse.

7.3.1 Autour de la borne de Khovanskii

Considérons un système polynomial réel

f1(z) = · · · = fn(z) = 0 (7.3.1)

en n variables, supporté par un ensemble W ⊂ Zn tel que |W| = n+ k + 1 pour un certain k ≥ 1.

Dans [BS07], F. Bihan et F. Sottile ont réduit de manière significative la borne fewnomiale de

Khovanskii (7.2.4) en montrant qu’il y a moins de

e2 + 3

4
2(k2)nk (7.3.2)
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solutions positives non dégénérées de (7.3.1). La méthode qu’ils utilisaient consiste à réduire le

système de départ en un système de k équations en k variables, appelé le transformé de Gale.

Ce transformé de Gale dépend de la configuration des vecteurs “Gale” duale aux exposants des

monômes dans le système original (voir [BS08]). Cette réduction donne que la borne supérieure

de la transformée de Gale est également vraie pour le nombre de solutions de (7.3.1). La borne

dans (7.3.2) est également vraie pour les polynômes avec des exposants réels. En outre, (7.3.2) est

asymptotiquement optimale dans le sens qu’en fixant k, il existe des systèmes avec O(nk) solutions

positives [BRS08].

La constante e2+3
4 qui apparait dans (7.3.2) est artificielle, son but est seulement de majorer une

expression plus compliquée. En outre, les auteurs de [BS07] estiment que le terme 2(k2) dans (7.3.2)

est considérablement exagérée. La borne dans (7.3.2) est également vraie pour les polynômes avec

des exposants réels. Notons que lorsqu’on pose n = k = 2 dans (7.2.4), on obtient 26 · 34 = 5184.

Bien que la nouvelle borne 15 est une borne fewnomiale considérablement plus petite pour un

système avec n = k = 2, les auteurs de [BS07] affirment que la borne optimale est encore plus

petite. Le cas n = k = 2 est le premier cas où nous ne savons pas grand-chose. En fait, avant cette

thèse, la première construction connue, donnant beaucoup de solutions positives non dégénérées

d’un système de deux polynômes à deux variables avec cinq monômes était essentiellement celle de

B. Haas (7.3.5). Une telle construction donne cinq solutions positives non dégénérées, et montre

que la borne supérieure optimale sur le nombre de solutions positives non dégénérées est supérieure

ou égale à 5. Dans ce qui suit, nous appellerons un système de deux équations à deux variables

avec cinq monômes distincts un système de type n = k = 2.

7.3.2 Utilisation du patchwork combinatoire

Considérons un système

f1,t(z) = · · · = fn,t(z) = 0, (7.3.3)

où chaque polynôme est obtenu à partir d’un polynôme
∑

w cwz
w de (7.3.1) en multipliant chaque

monôme cwz
w par une puissance réelle de t, où t est un paramètre positif qui sera pris très proche

de zéro. Soit V (fi,t) l’ensemble des zéros de fi,t dans Rn. Pour tout ε ∈ {±1}n, considérons

l’orthant

(R>0)ε := {x ∈ Rn | xiεi > 0 i = 1, . . . , n},

et soit Vε(fi,t) l’intersection de V (fi,t) avec (R>0)ε.

Le Théorème de O. Viro affirme qu’on peut construire combinatoirement à la fois un espace Qε
et un complexe simplicial Zε ⊂ Qε tel que le couple (Qε, Zε) est homéomorphe à ((R>0)ε, Vε(fi,t))

pour t > 0 suffisamment petit. A partir de cela, on peut récupérer (à homéomorphismes près)

toute l’hypersurface V (fi,t) (pour t > 0 suffisamment petit) en recollant à la fois ses différentes

parties, et leurs espaces ambiants.

Cela été généralisé par B. Sturmfels [Stu94] pour toute intersection complète V (f1,t) ∩ · · · ∩
V (fs,t), avec s ≤ n, étant donné que les exposants de t sont “suffisamment génériques”. Lorsque

s = n, cette méthode peut être utilisée pour construire des systèmes avec un beaucoup de solutions

positives non dégénérées et supports données. Récemment, F. Bihan [Bih14] a donné une borne

supérieure sur le nombre de solutions réelles non-dégénérées qui sont construits en utilisant la

généralisation de Sturmfels du Théorème de Viro. Cette borne est obtenue en utilisant le volume

mixte discret des supports des fi,t. De plus, il a démontré que cette borne est plus petite que

celle donnée dans la conjecture de Kushnirenko (voir Sous-section 7). Lorsque n = 2 et k = 1,
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le volume mixte discret n’est pas plus grand que 3 et la borne correspondante est optimale (voir

Sous-section 7). Lorsque n = k = 2, c’est facile de déduire par calcul que le volume mixte discret

n’est pas plus grand que 6 (voir Lemme 6.4 dans le Chapitre 6), et ce n’est pas connu si la borne

correspondante est optimale.

7.3.3 Systèmes supportés sur des circuits

L’un des premiers cas non-triviaux apparait lorsque n ≥ 2 et k = 1, et dans ce cas là, le support

W de (7.3.1) est un ensemble de n + 2 points dans Rn. F. Bihan [Bih07] a démontré que chaque

système polynomial supporté par tel W admet au plus n + 1 solutions positives non-dégénérées

et que cette borne est optimale. En outre, si cette borne est atteinte, alors W est minimalement

affinement dépendent, qui signifie que c’est un circuit dans Rn. Les systèmes polynomiaux sup-

portés par un circuit dans Zn dont toutes les solutions complexes non dégénérées sont positives

ont été étudiés dans [Bih15] (un tel système est appelé maximallement positif ). Comme résultat

principal, il est donné pour tout entier positif n une liste finie des circuits dans Zn qui peuvent

supporter des systèmes maximalement positifs à une action du groupe des transformations affines

inversibles de Zn près.

F. Bihan et A. Dickenstein [BD16] ont présenté la première version multivariée de la règle

de Descartes pour borner le nombre des solutions positives réelles non dégénérées d’un système

supporté par un circuit, en fonction de la variation de signe d’une suite associé aux vecteurs

d’exposants et aux coefficients donnés. Il est aussi démontré que la borne obtenue est optimale et

est reliée à la signature du circuit.

La première fois que les dessins d’enfant réels de Grothendieck, qui sont des graphes immergés

dans la sphère de Riemann, ont été utilisés dans le contexte fewnomials est due à F. Bihan [Bih07].

Notamment, il utilise des dessins d’enfant pour montrer l’exactitude de la borne n + 1 pour le

nombre de solutions positives d’un système supporté par un circuit W ⊂ Rn. Il a aussi démontré

en utilisant la même technique, l’optimalité de cette borne pour le nombre des solutions réelles de

ces systèmes. Il se trouve que, si l’on peut réduire un système fewnomial à une fonction polynomiale

rationnelle CP 1 → CP 1, alors on peut espérer d’utiliser les dessins d’enfant réels d’une manière

fructueuse afin d’étudier de près le système original. Cette technique donne un point de vue

intéressant sur la construction de systèmes polynomiaux avec un grand nombre de solutions réelles

(voir Chapitre 3), la caractérisation de tels systèmes (voir Chapitre 5) et même majorer le nombre

de solutions positives de systèmes polynomiaux creux (voir Chapitre 4).

La version de Sturmfels du patchwork combinatoire de Viro est encore une autre technique

efficace de la géométrie algébrique réelle qui peut être utilisée pour construire des systèmes poly-

nomiaux avec beaucoup de solutions réelles. Cette généralisation [Stu94] est pour les intersections

complètes des hypersurfaces algébriques réelles. Parmi beaucoup d’autres utilisations dans le con-

texte des Fewnomials, citons le papier de K. Phillipson et J.-M. Rojas [PR13] où il est construit

des systèmes polynomiaux supportés par un circuit dans Zn et avec n+ 1 solutions positives non

dégénérés dans le cas de corps de base autres que R.

7.3.4 Autour de la conjecture de Kuschnirenko

Considérons un système (7.3.1), et pour i = 1, . . . , n, notons par mi le nombre de points

contenus dans le support de fi. Rappelons que la Conjecture de Kushnirenko 7.1 affirme que (7.3.1)
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ne peut pas avoir plus de
n∏
i=1

(mi − 1)

solutions positives non dégénérées.

7.3.4.1 Premiers contre-exemples

La borne conjecturée n’est pas une borne sur le nombre de solutions positives isolées. W. Fulton

donna le contre-exemple suivant dans [Ful13] (voir aussi [Stu02]). Considérons le système

m∏
i=1

(z1 − i)2 +

m∏
i=1

(z2 − i)2 = 0, z1(z3 − 1) = 0, z2(z3 − 1) = 0, (7.3.4)

où m ≥ 5. La Conjecture de Kushnirenko prédit qu’un tel système admet au plus (4m+ 1−1)(2−
1)(2− 1) = 4m solutions positives réelles. Cependant, il y a m2 solutions positives de (7.3.4) de la

forme (i, j, 1), pour i, j ∈ N∗ entre 1 et m.

Un cas particulier de la Conjecture de Kuchnirenko affirme que lorsque n = 2 et m1 = m2 = 3,

le système (7.3.1) admet au plus quatre solutions positives non dégénérées. Dans un effort pour

réfuter cette conjecture, Haas montra dans [Haa02] que

10x106 + 11y53 − 11y = 10y106 + 11x53 − 11x = 0 (7.3.5)

admet cinq solutions positives non dégénérées. Bien avant, Konstantin A. Sevastyanov, un collègue

de Kushnirenko, a trouvé un contre-exemple similaire. Malheureusement, ce contre-exemple ne

semble pas avoir été retrouvé et, tragiquement, Sevastyanov est mort avant la publication de son

contre-exemple.

Il a été montré après dans [LRW03], en utilisant une analyse au cas-par-cas, que lorsque n = 2

et m1 = m2 = 3, la borne supérieure optimale sur le nombre de solutions positives non dégénérées

est cinq. En outre, il est démontré dans le même papier que si cette borne est atteinte, la somme

de Minkowski des polytopes de Newton ∆1 et ∆2 associés est un hexagone.

Un système polynomial plus simple

x6 + (44/31)y3 − y = y6 + (44/31)x3 − x = 0, (7.3.6)

qui aussi admet cinq solutions réelles positives non dégénérées a été découvert par A. Dickenstein,

J.-M. Rojas, K. Rusek et J. Shih [DRR07]. De plus, ils ont montré que tels systèmes sont rares

dans le sens suivant. Ils étudient la variété discriminant des espaces des coefficients du système

polynomial

x2d + ayd − y = y2d + bxd − x = 0, (7.3.7)

avec les paramètres (a, b, d), et montrent que les chambres (composantes connexes du complémentaire)

contenant les systèmes avec le nombres maximal de solutions positive sont “petites”.
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7.3.4.2 Un trinôme et un t-nôme

Les systèmes polynomiaux réels en deux variables

f = g = 0, (7.3.8)

où f admet t ≥ 3 termes non-nuls et g admet trois termes non-nuls ont été étudiés par T.Y. Li, J.-

M. Rojas and X. Wang [LRW03]. Ils ont démontré qu’un tel système, en permettant des exposants

réels, admet au plus 2t − 2 solutions positives isolées. L’idée est de substituer une variable du

t-nôme en fonction de l’autre, et de réduire le système à une fonction analytique en une variable

h(x) =

t∑
i=1

aix
ki(1− x)li ,

où tous les coefficients et exposants sont des réels. Le nombre de solutions positives de (7.3.8) est

égal au nombre de solutions de h = 0 contenues dans ]0, 1[. Les techniques principales utilisées

dans [LRW03] sont une extension du Theorème de Rolle et une récurrence qui comprend des

dérivées de certaines fonctions analytiques. En fait, les résultats de Li, Rojas et Wang [LRW03]

sont plus généraux. Considérons un système polynomial

f1 = · · · = fn = 0 (7.3.9)

à n variables, où les fonctions f1, . . . , fn−1 sont des trinômes et fn admet t monômes distincts. Les

auteurs dans [LRW03] montrent que (7.3.9) admet au plus n+ n2 + · · ·+ nt−1 solutions positives

non dégénérées.

La borne exponentielle 2t − 2 sur le nombre de solutions positives de (7.3.8) a été récemment

raffinée par P. Koiran, N. Portier et S. Tavenas [KPT15b] en une borne polynomiale. Ils ont

considéré une fonction analytique en une variable

t∑
i=1

m∏
j=1

f
αi,j
j , (7.3.10)

où tous les fj sont des polynômes réels de degrés au plus d et tous les exposants de fj sont

réels. En utilisant les Wronskians des fonctions analytiques, il a été démontré que le nombre de

solutions positives de (7.3.10) dans un intervalle I (en supposant que fj(I) ⊂]0,+∞[) est majoré

par t3md
3 + 2tmd + t. Comme cas particulier (en considérant m = 2, d = 1 et I =]0, 1[), ils

obtiennent que h(x) =
∑t

j=1 aix
ki(1− x)li admet au plus 2t3/3 + 5t racines dans I.

7.3.4.3 Une courbe plane et une droite

Lorsque le trinôme g de (7.3.8) est un polynôme de degré un, la borne optimale sur le nombre de

solutions réelles non-dégénérées de (7.3.8) est une fonction linéaire en t.

Notamment, M. Avendaño montra dans [Ave09] que si un tel système n’admet pas un nombre

infini de solutions réelles, il admet au plus 6t− 6 solutions dans (R∗)2, comptés avec multiplicités.

En particulier, il a démontré que le nombre de solutions positives non dégénérées de (7.3.8) est

au plus 2t− 2. La méthode utilisée dans [Ave09] consiste à remplacer z2 par az1 + b dans (7.3.8)

pour certains réels non-nuls a et b. De cette façon, avec l’aide de la règle de Descartes appliquée

au polynôme en une variable qui en résulte, on obtient finalement la borne 2t− 2.
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7.3.5 Autour d’une conjecture polynomiale-fewnomiale

A. Kushnirenko formula aussi la conjecture suivante (pour plus de détails sur le sujet, voir [Kus08]).

Considérons un système

f(x, y) = g(x, y) = 0 (7.3.11)

de deux équations en deux variables, où g est un polynôme avec t monômes distincts, et f est un

polynôme de degré d.

Conjecture 7.2. Le système (7.3.11) admet au plus N(d, t) solutions positives non dégénérées,

où N(d, t) est une fonction ne dépendant que des nombres d et t.

Sevostyanov prouva en 1978 qu’une telle fonction N(d, t) existe. Pourtant, ce résultat (avec

son contre-exemple à la conjecture de Kushnirenko) ne fut jamais publié. Selon [Sot11], ce résultat

fut une source d’inspiration pour Khovanskii pour développer la théorie des Fewnomials.

Évidemment, d’après les bornes de Khovanskii et Bihan-Sottile, une telle fonction N(d, t)

existe, néanmoins comme (7.3.11) est un cas très particulier d’un système générique (7.2.1), les

bornes (7.2.4) et (7.3.2) (qui sont exponentielles en d et t) peuvent être trop larges. La borne de

M. Avendaño [Ave09] montre que N(1, t) ≤ 2t− 2, qui est en effet optimale au moins pour t = 3

(voir [BEH15]).

La plus petite borne inférieure jusqu’à présent pour toutes valeurs d et t à été découverte par P.

Koiran, N. Portier et S. Tavenas [KPT15a]. Ils ont montré que (7.3.11) admet au plus O(d3t+d2t3)

solutions réelles lorsque ce nombre est fini. De plus, si l’ensemble de solutions réelles est infini, il

admet au plus O(d3t+ d2t3) composantes connexes.
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7.4 Résultats de la thèse

Nous divisons nos principaux résultats en quatre chapitres.

7.4.1 Chapitre 3: Intersection d’une courbe plane creuse avec une droite

Le chapitre 3 est un travail en commun avec F. Bihan [BEH15]. Considérons un système

f(x, y) = ax+ b− y = 0, (7.4.1)

où f ∈ R[x, y], admet t termes non nuls. Dans le chapitre 3, tous les solutions dans (R∗)2 sont

comptées avec multiplicités. Cela revient à compter le nombre de racines réelles d’un polynôme

f(x, ax + b), où a, b ∈ R et f ∈ R[x, y] admet au plus t termes non nuls. M. Avendaño montra

dans [Ave09, Théorème 1.1] que (7.4.1) admet au plus 6t − 4 solutions réelles comptées avec

multiplicités sauf pour les racine possibles 0 et −b/a. La question d’optimalité n’était pas abordé

dans [Ave09] et cela fut la motivation du travail actuel. Nous montrons le résultat suivant.

Théorème 7.5. Soit f ∈ R[x, y] un polynôme ayant au plus t termes non nuls et soit a, b deux

nombres réels. On suppose que le polynôme g(x) = f(x, ax + b) est non nul. Alors g admet au

plus 6t − 7 racines réelles comptées avec multiplicités sauf pour les racines éventuelles 0 et −b/a
qui sont comptés au plus une seule fois.

Les méthodes de démonstration de ce dernier résultat sont élémentaires, et constituent d’une

version raffinée de celles de [Ave09]. Cela pourrait ressembler à une petite amélioration du résultat

principal de [Ave09]. En fait, ce raffinement est non trivial, et la borne du Théorème 7.5 est

optimale au moins pour t = 3.

Théorème 7.6. Le nombre maximal de points d’intersections réels d’une droite réelle avec une

courbe plane réelle définie par un polynôme ayant trois termes non nuls est onze.

Explicitement, la courbe réelle d’équation

− 0.002404 xy18 + 29 x6y3 + x3y = 0 (7.4.2)

intersecte la droite réelle y = x+ 1 en précisément onze points dans R2.

La stratégie pour construire cet exemple est d’abord de déduire de la preuve du Théorème 7.5

quelques conditions nécessaires sur les monômes de l’équation souhaitée. Ensuite, l’utilisation des

dessins d’enfant de Grothendieck d’une manière nouvelle aide à tester la faisabilité de certains

monômes, puisque cette méthode donne une représentation claire de la topologie du graphe de

x 7→ f(x, x + 1). Finalement, des expérimentations sur un logiciel conduisent à une équation

précise (7.4.2).
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Figure 7.1: La courbe bleue représente le graphe de x 7→ f(x, x + 1), et la droite rouge
représente l’axe des abscisses (des parties de la courbe sont zoomées pour plus de clarté.)

7.4.2 Chapitre 4: Points d’intersection positifs d’une courbe trinomiale
et d’une courbe t-nomiale

Considérons le système (7.3.8) où f admet t ≥ 3 termes non nuls et g admet trois termes non

nuls. Supposons que le dernier système admet un nombre fini de solutions. Soit S(3, t) dénote le

nombre maximal de solutions positives non dégénérées de (7.3.8). On montre le résultat suivant

dans la Section 4.2.

Théorème 7.7. On a S(3, t) ≤ 3 · 2t−2 − 1.

Notons que puisque le nombre de solutions positives de deux trinômes en deux variables est

borné par cinq (voir [LRW03]), la borne S(3, t) est optimale pour t = 3. En outre, pour t = 4, . . . , 9,

cette nouvelle borne est plus petite que les bornes 2t − 2 et 2t3/3 + 5t, obtenues dans [LRW03]

et [KPT15b] respectivement, et montre par exemple que 6 ≤ S(3, 4) ≤ 11.
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Rappelons qu’en exprimant un variable du trinôme g de (7.3.8) en fonction de l’autre réduit

le système à une fonction analytique en une variable

h(x) =

t∑
i=1

aix
ki(1− x)li .

Le nombre de solutions positives de (7.3.8) est égal à celui de h = 0 contenus dans ]0, 1[. On

démontre le théorème 7.7 en utilisant la même approche que celle de [LRW03] i.e. on considère

une récurrence faisant intervenir des dérivées de fonctions analytiques en une variable associées au

système (7.3.8). En commençant avec la fonction f1 = h, à chaque étape 1 < i < t, on se retrouve

avec une fonction fi définie comme une certaine dérivée de fi−1 multipliée par des puissances de

x et de (1− x). En appliquant le Théorème de Rolle à chaque fi, on peut borner le nombre de ses

racines contenues dans ]0, 1[ en fonction des racines de fi−1 dans le même intervalle. Il apparâıt que

dans l’étape t− 2, on est réduit à borner le nombre de solutions dans ]0, 1[ de l’équation φ(x) = 1,

où

φ(x) =
xα(1− x)βP (x)

Q(x)
,

α, β ∈ Q, et à la fois P et Q sont des polynômes réels de degrés au plus 2t−2 − 1.

La plus grande partie du Chapitre 4 est consacrée à la preuve dans la Section 4.3 du résultat

suivant.

Théorème 7.8. On a ]{x ∈]0, 1[ |φ(x) = 1} ≤ degP + degQ+ 2.

En choisissant m ∈ N tel qu’à la fois mα et mβ soient des entiers, on obtient alors une fonction

rationnelle ϕ := φm : CP 1 −→ CP 1. Les images inverses de 0, 1, ∞ sont données par les racines

de P , Q, ϕ − 1, ainsi que 0 et 1 (si αβ 6= 0). Ces images inverses son contenues dans le graphe

Γ := ϕ−1(RP 1) ⊂ CP 1, qui est un exemple d’un dessin d’enfant réel de Grothendieck. Beaucoup

de restrictions sur la topologie du graphe de ϕ apparaissent explicitement comme des restrictions

sur Γ = ϕ−1(RP 1). Notamment, les points critiques de ϕ correspondent aux sommets de Γ. Le

nombre de racines de ϕ − 1 dans ]0, 1[ est contrôlé par le nombre de certains types de points

critiques de ϕ appelées points critiques positifs utiles. En faisant une analyse fine sur Γ, on borne

le nombre de sommets correspondants à ces points critiques en fonction de degP et degQ.

On considère dans la Section 4.4 le cas t = 3 i.e. le cas de deux trinômes en deux variables.

Rappelons que lorsque le nombre maximal de solutions positifs est atteint, la somme de Minkowski

∆1 + ∆2 est un hexagone (voir [LRW03]). Du point de vue des éventails normaux, ça signifie que

l’éventail normal de la somme de Minkowski ∆1 + ∆2, qui est le raffinement commun des éventails

normaux de ∆1 et ∆2, admet six cônes 2-dimensionnels (et six cônes 1-dimensionnels). On donne

des contraintes supplémentaires suivantes sur la somme de Minkowski de ∆1 et ∆2 lorsque (7.3.8)

admet cinq solutions positives. On dit que ∆1 et ∆2 alternent si chaque cône 2-dimensionnel de

l’éventail normal de ∆1 contient un cône 1-dimensionnel de l’éventail normal de ∆2 ayant seulement

l’origine comme face commune. Une analyse plus fine de Γ dans le cas t = 3 nous permet d’obtenir

le résultat suivant.

Théorème 7.9. Si le système (7.3.8) admet 5 solutions positives, alors ∆1 et ∆2 n’alternent pas.

Les triangles de Newton ∆1 et ∆2 n’alternent pas veux dire qu’il existe deux arêtes consécutives

de ∆1 + ∆2 qui sont des translatés de deux arêtes consécutives de ∆1 ou bien de ∆2. Figure 7.2

illustre ce théorème pour le système (7.3.6), et on fournit un autre exemple dans la Section 4.4.
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Figure 7.2: Les polytopes de Newton, leurs somme de Minkowski et les éventails normaux
associées de (7.3.6).

7.4.3 Chapitre 5: Caractérisation des circuits supportant des systèmes
polynomiaux avec le nombre maximal de solutions positives

Rappelons qu’un circuit W ⊂ Rn est un ensemble de n + 2 points distincts minimalement

affinement dépendants. Une généralisation très récente de la règle de Descartes a été développée

par F. Bihan et A. Dickenstein dans [BD16]. Ceci a donné des conditions sur à la fois le circuit

et la matrice des coefficients qui sont nécessaires pour que le système admette n + 1 solutions

positives non dégénérées. Plus précisément, les auteurs de [BD16] montrent que si un tel système

admet n+ 1 solutions positives non dégénérées, alors tous les mineurs maximaux de la matrice des

coefficients sont non nuls et toute relation affine
∑n+2

i=1 λiwi = 0 sur W admet le même nombre (à

un écart de 1 si n est impair) de coefficients positifs que de coefficients négatifs. Dans le chapitre 5,

on caractérise complètement les circuits qui supportent des systèmes polynomiaux ayant n + 1

solutions positives non dégénérées.

Théorème 7.10. Un circuit W dans Rn supporte un système avec n + 1 solutions positives non

dégénérées si et seulement si il existe une bijection

{1, . . . , n+ 2} −→ W
i 7−→ wi

tel que chaque relation affine W peut s’écrire comme

s∑
i=1

αiwi =

n+2∑
s+1

αiwi,

où s = b(n+ 2)/2c et tous les αi sont des nombres positifs satisfaisant

r∑
i=1

αi <

s+r∑
i=s+1

αi <

r+1∑
i=1

αi pour r = 1, . . . , s− 1 si n est pair



7.4. Résultats de la thèse 166

ou
r∑
i=1

αi <

s+r+1∑
i=s+2

αi <

r+1∑
i=1

αi pour r = 1, . . . , s− 1 si n est impair.

F. Bihan montra dans [Bih15] que si un circuit dans Zn supporte un système maximalement

positif avec n + 1 solutions positives non dégénérées, alors ce circuit admet une relation affine

primitive (i.e. relation affine avec des coefficients entiers premiers entre eux) comme celle dans le

théorème 7.10 avec α1 = αn+2 = 1 et tous les autres coefficients sont égaux à deux. Ceci peut

être vu comme une conséquence du théorème 7.10 (voir Exemple 5.12, Section 5.2). En effet, si W
supporte un système maximalement positif avec n+ 1 solutions positives non dégénérées, alors le

sous-groupe de Zn engendré par W est Zn. En outre, si
∑s

i=1 αiwi =
∑n+2

s+1 αiwi est une relation

affine primitive, alors
∑s

i=1 αi =
∑n+2

s+1 αi = n+ 1 (voir [Bih15] pour plus de détails), ce qui avec

les inégalités du théorème 7.10 implique les égalités voulues. Afin de démontrer le théorème 7.10,

on peut se ramener au cas où W ⊂ Zn (voir la première partie du Chapitre 5). On démontre la

partie “seulement si” du théorème 7.10 de la façon suivante. Considérons un système polynomial

supporté par un circuit en n équations à n variables qui admet le nombre maximal de solutions

positives non dégénérées. On lui associe en utilisant la dualité de Gale (voir Section 5.1) une

function à une variable

ϕ(y) =

n+1∏
i=1

Pλii ,

où Pi est un polynôme de degré 1 qui dépend des équations du système,
∑n+2

i=1 λi(wi−w0) = 0 est

une relation linéaire entre les vecteurs wi−w0 et les solutions positives non dégénérées du système

initial sont en bijection avec les solutions de ϕ(y) = 1 contenues dans

∆+ = {y ∈ R>0 | Pi(y) > 0, i = 1, . . . , n+ 1}.

L’homogénisation de ϕ est une application rationnelle CP 1 → CP 1, telle que l’image inverse de

RP 1 par cette homogénisation est le dessin d’enfant réel Γ (voir le chapitre 2). Comme les valences

des sommets de Γ sont contrôlées par les entiers λi et les racines de Pi pour i = 1, . . . , n + 1, en

analysant Γ, on obtient les inégalités du théorème 7.10.

Les solutions de ϕ(y) = 1 dans ∆+ sont les racines du polynôme de Gale

G(y) =
∏
λi>0

Pλii (y)−
∏
λi<0

P−λii (y) (7.4.3)

dans le même intervalle. Dans [PR13, preuve du Lemme 1.8], K. Phillipson et J.-M. Rojas ont

construit des systèmes polynomiaux supportés par un circuit dans Zn avec n+1 solutions positives

non dégénérées en utilisant les polynômes de Viro Pi,t(y) = ai+ tαibi, où ai, bi, αi ∈ R, et t > 0 est

un paramètre qui seras pris suffisamment petit. Ils appliquent la version de Sturmfels du patchwork

combinatoire de Viro développé dans [Stu94] qui comprend la subdivision mixte des polytopes de

Newton. Ici, on utilise aussi les polynômes de Viro Pi,t, et on regarde directement les racines

dans ∆+ des polynômes de Gale correspondants. Les inégalités dans Théorème 7.10 apparaissent

explicitement comme étant nécessaires pour construire des systèmes polynomiaux supportés par

un circuit dans Zn avec n+ 1 solutions positives non dégénérées en utilisant les polynômes de Viro

Pi,t.
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7.4.4 Chapitre 6: Construire des systèmes polynomiaux avec beaucoup
de solutions positives

La géométrie tropicale est un nouveau domaine des mathématiques qui se situe à la croisée de

domaines tels que la géométrie torique, la géométrie complexe ou réelle, et la combinatoire [Mik06,

MR05, MS15]. Il se trouve que la généralisation de Sturmfels du Théorème de Viro peut être

reformulée dans le contexte de la géométrie tropicale (voir [Mik04, Rul01]). Ce qui fait de la

géométrie tropicale un outil effectif pour construire des systèmes polynomiaux avec un support

prescrit et avec beaucoup de solutions positives.

Rappelons que la meilleure borne fewnomiale connue sur le nombre de solutions positives non

dégénérées d’un système polynomial réel de n équations en n variables supporté par un ensemble

de n + k + 1 points où k, n ≥ 1, est égale à e2+3
4 2(k2)nk [BS07]. En fait, le même papier contient

la meilleure borne supérieure 15 lorsque n = k = 2. D’un autre côté, les meilleures constructions

connues donnent 5 solutions positives non dégénérées (voir [Haa02]). La motivation derrière le

chapitre 6 est d’utiliser la version de Sturmfels du patchwork combinatoire de Viro, et autres

outils et résultats (voir Chapitre 2, Sous-section 2.2.6) développés dans la géométrie tropicale pour

construire un système de deux équations en deux variables et avec cinq monômes en total (un

système du type n = k = 2 en abrégé) ayant beaucoup de solutions positives.

Soit K le corps des séries de Puiseux generalisées localement convergentes

a(t) =
∑
r∈R

αrt
r,

où R ⊂ R est un ensemble bien ordonné et a(t) est une série complexe convergente pour t > 0

suffisamment petit. Ceci est un corps algébriquement clos. Considérons le sous-corps RK de K
formés des séries de Puiseux généralisées réelles, qui veut dire que les αr apparaissant dans a(t)

sont des nombres réels. On considère dans le chapitre 6 un système polynomial (de Laurent) creux

f1(z) = f2(z) = 0, (7.4.4)

dont les équations sont définies sur RK. On suppose que (7.4.4) admet un nombre fini de solutions,

toutes non dégénérées. Un élément positif a(t) de K est un élément de RK∗ dont le coefficient du

terme de premier ordre est positif.

À un polynôme de Laurent f(z) =
∑

w∈W cwz
w ∈ R[z], on associe un polynôme tropical

ftrop(x) = “
∑
w∈W

val(cw)xw”,

où val(cw) est moins l’ordre (dans le sens classique) des séries de Puiseux cw, et les opérations sont

les opérations tropicales (la somme est le max, et le produit est la somme classique). L’hypersurface

tropicale associée T est le lieux des coins de la fonction convexe linéaire par morceaux Rn →
Rn, x 7→ ftrop(x). Par le Théorème de Kapranov [Kap00] (voir Chapitre 2, Sous-section 2.2.2),

l’hypersurface tropicale T cöıncide avec la clôture de

Val ({z ∈ (K∗)n | f(z) = 0}) ,

où Val est l’extension de la fonction val coordonnée par coordonnée. La partie positive de T est

la clôture de Val ({z ∈ (RK>0)n | f(z) = 0}) .
Considérons maintenant encore les polynômes f1, f2 ∈ RK[z±1

1 , z±1
2 ] définissant deux courbes

tropicales T1, T2 ⊂ R2. Supposons pour le moment que T1 et T2 s’intersectent transversalement,
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ce qui signifie que chaque point d’intersection est isolé et contenu dans l’intérieur relatif d’une

pièce linéaire 1-dimensionnelle de T1 et une autre pièce linéaire 1-dimensionnelle de T2. Alors

par la généralisation de Sturmfels du Théorème de Viro, chaque point d’intersection de T1 et T2

contenu dans les deux parties positives (point d’intersection positif en bref) se remonte à une

unique solution de (7.4.4) dans (RK>0)2, ce qui donne des solutions positives d’un système réel

g1(z) = g2(z) = 0 en prenant t > 0 suffisamment petit. Rappelons que dans le cas où n = k = 2

(ce qui signifie que les équations de T1 et T2 ont en total cinq monômes), le nombre de points

d’intersections transverses de T1 et T2 est majoré par six (voir Sous-section 7). On démontre que

cette borne est optimale et peut être réalisée par des points d’intersections positifs.

Proposition 7.3. Il existe deux courbes tropicales planes T1 et T2 définies par des équations ayant

cinq monômes distincts au total et qui ont six points d’intersections transverses positifs.

Par conséquent, en utilisant la généralisation de Sturmfels de la Théorème de Viro (comme

expliqué au dessus), ceci donne un système de type n = k = 2 admettant six solutions positives

non dégénérées. Afin d’obtenir un système de type n = k = 2 avec plus que six solutions posi-

tives non dégénérées, on considère donc des courbes tropicales T1 et T2 qui ne s’intersectent pas

transversalement.

Notons que T1 ∩ T2 est linéaire par morceaux et ses pièces linéaires sont soit des point isolés,

soit des segments. Heureusement, si une pièce linéaire ξ ⊂ T1 ∩ T2 est un point isolé, alors

les résultats de [Kat09, Rab12, OP13] et [BLdM12] montrent que ξ se remonte en des solutions

de (7.4.4) dans (K∗)2. Les solutions positives non dégénérées de (7.4.4) dont la valuation est

égale à ξ peuvent être estimées en calculant le système réduit réel de (7.4.4) par rapport à ξ (voir

Chapitre 2, Sous-section 2.2.6). Par contre, si cette pièce linéaire ξ a une dimension égale à 1,

alors ξ est un ensemble infini contenant un ensemble fini (éventuellement vide) de points qui sont

les valuations des solutions positives non dégénérées de (7.4.4). Ce n’est pas facile de localiser

ces valuations. En fait, la seule méthode pour accomplir cette tâche, est appelée la modification

tropicale (voir [Mik06, BLdM12]). Ce problème est traité dans la section 6.2 du chapitre 6 en

utilisant une autre approche. Notamment, pour chaque pièce linéaire ξ de dimension 1, on associe

un polynôme de Viro ft,ξ tel que tous les termes de premier ordre des solutions positives non

dégénérées de (7.4.4) de valuation dans l’intérieur relatif de ξ peuvent être récupérés par le système

réduit (7.4.4) par rapport à ξ et le polynôme de Viro ft,ξ.

On considère maintenant le système (7.4.4) de type n = k = 2. Supposons qu’il n’existe pas

une droite dans R2 contenant trois points du support du système. On montre dans la section 6.3

qu’on peut associer à ce système un nouveau système

a0 + ym1
1 + a2y

m2
1 yn2

2 + a3t
αym3

1 yn3
2 = 0,

b0 + ym1
1 + b2y

m2
1 yn2

2 + b4t
βym4

1 yn4
2 = 0,

(7.4.5)

dont les polynômes sont dans RK[y±1
1 , y±1

2 ], qui a le même nombre de solutions positives non

dégénérées que (7.4.4), et satisfaisant que l’ordre de tous les ai, bj est nul, tous les mi, ni apparti-

ennent à Z avec m1, n2 > 0, et α, β sont des nombres réels.

Les deux résultats principaux du chapitre 6 sont les suivants.

Théorème 7.11. Si (α, β) 6= (0, 0), alors (7.4.5) admet au plus neuf solutions positives non

dégénérées.

Nous démontrons le théorème 7.11 dans la section 6.5. Notons que si (α, β) = (0, 0), alors on

peut rien faire si on veut utiliser la géométrie tropicale. En effet, le problème de borner le nombre de
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solutions positives non dégénérées de (7.4.5) revient alors à borner le nombre de solutions positives

d’un système polynomial réel de type n = k = 2.

Théorème 7.12. Il existe un système (7.4.5) ayant sept solutions positives non dégénérées .

La construction d’un système (7.4.5) qui admet sept solutions positives non dégénérées est

effectué dans la section 6.5. Notamment, pour tout 0 < α < γ0, le système

−1 + y6
1 + y3

1y
6
2 − tαy−14

1 y7
2 = 0,

−1 + 0.36008tγ0 + y6
1 + (1− 0.36008tα)y3

1y
6
2 − (44/31)

5
6 tαy−12

1 y9
2 = 0,

(7.4.6)

admet sept solutions positives non dégénérées.

On a effectué une analyse au cas par cas pour obtenir des conditions nécessaires pour que (7.4.5)

admet plus que six solutions positives non dégénérées. En particulier, on a obtenu dans les Sec-

tions 6.6 et 6.7 le résultat suivant.

Théorème 7.13. Si (α, β) 6= (0, 0), et l’une des conditions suivantes est vraie

1. Pour i = 0, 2, le coefficient du terme de premier ordre de ai est différent de celui de bi,

2. α 6= β,

3. α = β < 0,

alors (7.4.5) admet au plus six solutions positives non dégénérées.
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