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Résumé
Géométrie Tropicale et Systemes Polynomiaux

Les systéemes polynomiaux réels sont omniprésents dans de nombreux domaines des math-
ématiques pures et appliquées. A. Khovanskii a fourni une borne fewnomiale supérieure sur le
nombre de solutions positives non-dégénérées d’un systeme polynomial réel de n équations a n
variables qui ne dépend que du nombre de monomes apparaissant dans les équations. Cette derniere
borne a été récemment améliorée par F. Bihan et F. Sottile, mais la borne résultante peut étre
encore améliorée, méme dans certains cas simples.

Le but de ce travail est d’aborder trois problémes importants dans la théorie des Fewnomials.
Considérons une famille de systémes polynomiaux réels avec une structure donnée (par exemple,
support ou le nombre de monomes). Un probléme est de trouver de bonnes bornes supérieures pour
leurs nombres de solutions réelles (ou positives). Un autre probléme est de construire des systémes
dont le nombre de solutions réelles (ou positives) sont proches de la meilleure borne supérieure
connue. Lorsqu’une borne supérieure optimale est bien connue, qu’est ce qu’on peut dire dans le
cas ou elle est atteinte?

Dans cette these, nous affinons un résultat de M. Avendano en démontrant que le nombre de
points d’intersection réels d’une droite réelle avec une courbe réelle plane définie par un polynéme
avec au plus ¢ monémes est soit infini ou ne dépasse pas 6t — 7. En outre, on montre que notre
borne est optimale pour ¢t = 3 en utilisant les dessins d’enfant réels de Grothendieck. Cela montre
que le nombre maximal de points d’intersection réels d’une droite réelle avec une courbe trinomiale
réelle plane est onze.

Nous considérons ensuite le probleme de ’estimation du nombre maximal de points d’intersection
transverses positifs d’une courbe plane trinomiale et d’une courbe plane t-nomiale. T-Y Li, J.-
M. Rojas et X. Wang ont montré que ce nombre est borné par 2t — 2, et récemment P. Koiran,
N. Portier et S. Tavenas ont trouvé la borne supérieure 2t3/3 + 5t. Nous fournissons la borne
supérieure 3 - 2¢72 — 1 qui est optimale pour ¢t = 3 et est la plus petite pour t =4,...,9. Ceci est
réalisé en utilisant la notion de dessins d’enfant réels. De plus, nous étudions en détail le cas t = 3
et nous donnons une restriction sur les supports des systemes atteignant la borne optimale cing.

Un circuit est un ensemble de n+2 points dans R™ qui sont minimalement affinement dépendants.
Il est connu qu’un systéme supporté sur un circuit a au plus n+1 solutions positives non dégénérées,
et que cette borne est optimale. Nous utilisons les dessins d’enfant réels et le patchwork combi-
natoire de Viro pour donner une caractérisation complete des circuits supportant des systéemes
polynomiaux avec le nombre maximal de solutions positives non dégénérées.

Nous considérons des systemes polynomiaux de deux équations a deux variables avec cing
monomes distincts au total. Ceci est I'un des cas les plus simples ol la borne supérieure optimale
sur le nombre de solutions positives non dégénérées n’est pas connue. F. Bihan et F. Sottile ont
prouvé que cette borne optimale est majorée par quinze. D’autre part, les meilleurs exemples
avaient seulement cing solutions positives non dégénérées.

Nous considérons des systemes polynomiaux comme avant, mais défini sur le corps des séries de
Puiseux réelles généralisées et localement convergentes. Les images par ’application de valuation
des solutions d’un tel systéme sont des points d’intersection de deux courbes tropicales planes. En
utilisant des intersections non transverses des courbes tropicales planes, on obtient une construc-
tion d’un systeme polynomial réel comme ci-dessus ayant sept solutions positives non dégénérées.

Mots clés— Géométrie Algébrique Réelle, Théorie des Fewnomials, Géométrie Tropicale,
Systemes Polynomiaux



Abstract

Tropical Geometry and Polynomial Systems

Real polynomial systems are ubiquitous in many areas of pure and applied mathematics. A.
Khovanskii provided a fewnomial upper bound on the number of non-degenerate positive solutions
of a real polynomial system of n equations in n variables that depends only on the number of
monomials appearing in the equations. The latter bound was recently improved by F. Bihan and
F. Sottile, but the resulting bound still has room for improvement, even in some simple cases.

The aim of this work is to tackle three main problems in Fewnomial theory. Consider a family
of real polynomial systems with a given structure (for instance, supports or number of monomials).
One problem is to find good upper bounds for their numbers of real (or positive) solutions. Another
problem is to construct systems whose numbers of real (or positive) solutions are close to the best
known upper bound. When a sharp upper bound is known, what can be said about reaching it?

In this thesis, we refine a result by M. Avendano by proving that the number of real intersection
points of a real line with a real plane curve defined by a polynomial with at most ¢ monomials
is either infinite or does not exceed 6t — 7. Furthermore, we prove that our bound is sharp for
t = 3 using Grothendieck’s real dessins d’enfant. This shows that the maximal number of real
intersection points of a real line with a real plane trinomial curve is eleven.

We then consider the problem of estimating the maximal number of transversal positive in-
tersection points of a trinomial plane curve and a t-nomial plane curve. T-Y Li, J.-M. Rojas and
X. Wang showed that this number is bounded by 2! — 2, and recently P. Koiran, N. Portier and
S. Tavenas proved the upper bound 2t3/3 + 5t. We provide the upper bound 3 - 2/=2 — 1 that
is sharp for ¢ = 3 and is the tightest for ¢ = 4,...,9. This is achieved using the notion of real
dessins d’enfant. Moreover, we study closely the case ¢ = 3 and give a restriction on the supports
of systems reaching the sharp bound five.

A circuit is a set of n 4+ 2 points in R™ that is minimally affinely dependent. It is known
that a system supported on a circuit has at most n + 1 non-degenerate positive solutions, and
that this bound is sharp. We use real dessins d’enfant and Viro’s combinatorial patchworking to
give a full characterization of circuits supporting polynomial systems with the maximal number of
non-degenerate positive solutions.

We consider polynomial systems of two equations in two variables with a total of five distinct
monomials. This is one of the simplest cases where the sharp upper bound on the number of non-
degenerate positive solutions is not known. F. Bihan and F. Sottile proved that this sharp bound
is not greater than fifteen. On the other hand, the best examples had only five non-degenerate
positive solutions. We consider polynomial systems as before, but defined over the field of real
generalized locally convergent Puiseux series. The images by the valuation map of the solutions
of such a system are intersection points of two plane tropical curves. Using non-transversal inter-
sections of plane tropical curves, we obtain a construction of a real polynomial system as above
having seven non-degenerate positive solutions.

Keywords— Real Algebraic Geometry, Theory of Fewnomials, Tropical Geometry, Polyno-
mial Systems
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Chapter 1

Introduction

One of the fundamental problems in mathematics is solving real polynomial equations since poly-
nomial systems arise naturally and ubiquitously in mathematics and many of its applications.
We see them appearing in such fields as control theory [Byr89], kinematics [BR90], chemistry
[GHO2, MFR16] and many others where it is mainly the real solutions that matter. In this intro-
duction we give a brief overview on solving polynomial equations and state the main results of this
thesis. For a more detailed exposition on solving polynomial equations, see for example [Sot1I]
or [Stu02].

1.1 Univariate polynomials

Galois theory shows that for a univariate polynomial f with real coefficients and degree less or
equal to four, there exists a general formula that explicitly determines the complex roots of f in
terms of its coefficients. However this statement is false if f has degree larger than four. This
means that computing the roots of high-degree polynomials is not an easy task. Nevertheless, there
are many methods and results devoted especially to this problem (see for example [Stu02]). By
the Fundamental theorem of algebra, any univariate polynomial f has at least one complex root.
Moreover, the number of its complex roots (counted with multiplicities) is equal to its degree.

Unfortunately, in general the degree is a bad estimate for the number of real roots of f e.g.
1 — 219 has 98 non-real roots and only two real ones. Descartes’ rule of sign [Des97], which dates
back to 1637, is one of the earliest results that gives a more accurate estimation for the number of
real roots of f. Suppose that we write the terms of f in increasing order of their exponents,

f(x) - bOxkO + blxk1 +---+ bmmkma (111)
where b; # 0 and kg < - -+ < k.

Theorem 1.1 (Descartes’ rule of sign). The number r of isolated positive roots of f, counted with
multiplicity, is at most the number of sign changes of its coefficients,

r<{i|1<i<m and b;_1b; <O0}.

Theorem [I.1] also holds true for univariate polynomials with real exponents. The immediate
consequence for this rule is that the number of positive solutions of f is bounded from above by
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m. Moreover, replacing x by —z and applying Theorem to the resulting polynomial gives a
similar estimation for the number of negative roots of f. Therefore, the number of non-zero real
roots of f is less or equal to 2m.

It is important to note that Descartes’ rule of sign, and thus the resulting Descartes’ bound, is
independent of the degree. This naturally brings about the question of generalizing Theorem [T.]]
to a polynomial system.

1.2 Sparse polynomial systems

Consider a real polynomial system

filz1, .o oyzn) == fulz1,...,20) = 0. (1.2.1)

In general, we look for solutions of in the complex torus (C*)™ since solutions in coordinate
hyperplanes are solutions in complex tori of smaller dimensions of truncated systems. A solution
¢ € C™ of is non-degenerate if the Jacobian of evaluated at ¢ has full rank.
Non-degenerate solutions are easier to manipulate since their number will not decrease after any
“slight” perturbation of the coefficients of the associated system.

1.2.1 Polyhedral bounds

Denote by d; the total degree of f;. Bézout’s fundamental Theorem [Béz79] states that the number
of non-degenerate complex solutions of is less or equal to dy - - - d,,. Moreover, this bound
is sharp. Polynomial systems that arise naturally may have some special structure, for instance in
terms of disposition of the exponent vectors or their number (cf. [Sot1l]). However, a great part
of this combinatorial data is disregarded when using the degree to bound the number of complex
solutions, and thus the Bézout bound can be rough. In fact, there exist bounds that depend on
the polyhedral structure associated to the polynomial system that we describe now.

To any w = (w',...,w") € Z" is associated a monomial 2% € R[z, ... 251
[thl £l

PRI,

Consider a

Laurent polynomial f € R | written as

F(2) = cws, (1.2.2)

weW

where ¢,, # 0 for all w € W. The set W is called the support of f. The support of a system
is the union of the supports of fi,..., f,. The Newton polytope of f is the convex hull Ay
of W. Write Vol(A) for the Euclidean volume of a polytope A C R™. We have the following
fundamental result due to A. Kushnirenko [Kus75].

Theorem 1.2 (Kushnirenko). If (1.2.1) has support W, then it has at most n! Vol(Ayy) isolated
solutions in (C*)", and exactly this number if the polynomials are generic among systems with
support W.

D. N. Bernstein [Ber75| refined this result taking the individual supports into account. Let
W, denotes the support of the polynomial f; appearing in ((1.2.1). The Minkowski sum of the
convex hulls of W; for ¢ = 1,...,n, is a pointwise sum

Ay, +-+Aw, ={wr + -+ w, | w1 € Aw, ,...,w, € Ay, }.
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Minkowski (see [Ewal2]) showed that given convex bodies K7, ..., K, in R™ and positive numbers
Aly .-y Ap, the function Vol(A\1 K; + --- + A\, K,,) is a homogeneous polynomial in Aq,..., A, of
degree n, so there exist coefficients V(K;,, ..., K; ) for 41,...,9, € [n] such that

VolM Ky + -+ MKp) = > V(K Ki )Ny A, (1.2.3)

i1yeyin €[]

The mixed volume, MV (K, ..., K,) of Ky,..., K, is V(Ki,...,K,). Now we state Bernstein’s
important generalization of Kushnirenko’s Theorem.

Theorem 1.3 (Bernstein). A system of n polynomials in n variables where the polynomials have
support Wy, ..., Wy, has at most MV (A, ..., Ay, ) isolated solutions in (C*)™, and exactly this
number when the polynomials are generic for their given supports.

It is worth noting that a non-degenerate solution of a system is an isolated one, thus both
Kuschnirenko and Bernstein Theorems give upper bounds for the number of non-degenerate so-
lutions in (C*)™ of a polynomial system. Although the degree and previous polyhedral bounds
hold true for the number of non-degenerate solutions in (R*)™ as well, the resulting bounds are
not always sharp. This typically happens when the total support W of has few elements
comparatively to Ay NZ™.

1.2.2 Fewnomial bounds

Denote by W C R™ the support of . Multivariate generalizations of Descartes’ bound (The-
orem for systems of multivariate polynomials are called Fewnomial boundsﬂ A particular
attention is paid to the positive solutions of , which are the solutions contained in the pos-
itive orthant of R™. Indeed, assume that there exists a sharp upper bound Ny, on the number of
non-degenerate positive solutions of that depends only on W. Then this Ny also bounds
the number of solutions contained in any other orthant, and thus will not have more than
2" Nyy solutions in (R*)™. Recall that Descartes showed that we have Nyy = [W|—1 for n = 1, but
still, before Khovanskii’s book [Kho91], it was not clear that such Ny even exists for any n > 2.

Theorem 1.4 (Khovanskii). A system of n real polynomials in n variables involving n + k + 1
distinct monomials has fewer than
n+k

2("2") (n + 1)+, (1.2.4)

non-degenerate positive solutions.

The existence of a bound on the number of non-degenerate positive solutions that is indepen-
dent of the degrees of the polynomials was revolutionary and is the main point of Khovanskii’s
result. It also confirms Kushnirenko’s principle that the topological complexity of objects, de-
fined by real-valued polynomials, can be controlled by the complexity of the definition of these
polynomials rather than by degrees or by some characteristics of Newton polyhedra of equations.

Also, the bound in Theorem [I.4] is not sharp. In fact, Theorem [[.4] is a particular case of a
Khovanskii’s more general result involving solutions in R™ of polynomial functions in logarithms
of the coordinates and monomials (see [Kho91]). For example, when k = 0, the support W of the

system is a simplex, and there will be at most one real solution, which is smaller than 2(3) (n4+1)".

!The term “Fewnomial” was coined by A. Kushnirenko, where he replaced the term “poly” of the word
“polynomial”, by the term “Few” (c.f. [Kus08])
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Although it was commonly believed that Khovanskii’s bound was far from being sharp,
improving it turns out to be not an easy task.

Fewnomial theory was mainly initiated by Kushnirenko’s famous conjecture which was formu-
lated in the late 70’s as a tentative generalization of Descartes’ bound.

Conjecture 1.5 (Kushnirenko). A system of n real polynomials in n variables, where the polyno-
mials have supports Wi, ..., W, has at most

n

[Towil - 1)

i=1
non-degenerate positive solutions.

Constructing polynomial systems reaching Kushnirenko’s conjectured bound is not a difficult
task. Namely, such a construction might be for instance a system

gi(z) =0, for i=1,...,n

consisting of univariate polynomials, where each g; has m; terms and m; — 1 non-degenerate
positive solutions (Descartes’ bound). In fact, the lack of efficient construction methods at the
time instigated Kushnirenko to establish his conjecture.

1.3 Results prior to this thesis

After the famous Khovanskii’s Theorem, there were many recent contributions dedicated to the
theory of Fewnomials, (c.f. [Sot1] for a survey). In this section, we give but a few of the many
results developed in this millennia. Most of these results are further investigated and in some cases
improved in this thesis.

1.3.1 Around Khovanskii’s bound

Consider a real polynomial system

fi(z) == falz) =0 (1.3.1)

in n variables supported on a set W C Z™ such that [W| =n+k+1 for some & > 1. In [BS07], F.
Bihan and F. Sottile significantly reduced Khovanskii’s fewnomial bound (1.2.4)) by showing that
there are fewer than

2 N
< 232@%& (1.3.2)

non-degenerate positive solutions to . The method they used consists of reducing the original
system to a system of k equations in k variables, called Gale transform. This Gale transform
depends upon the vector configuration “Gale” dual to the exponents of the monomials in the
original system (see [BS08]). This reduction gives that an upper bound on the Gale transform
also holds true for the number of solutions of . The bound in also holds true for
polynomials with real exponents. Moreover, the significance of it is that is asymptotically
sharp in the sense that for fixed k, there are systems with O(n*) positive solutions [BRS0S] .
The constant #ﬁ appearing in is artificial, its purpose is only to bound from above a

k
2

more complicated expression. Moreover, the authors in [BS07] believe that the term 2(2) in (11.3.2)
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is considerably overstated. In fact, when k = 2, this smaller bound is actually 2n? +
| (3t | Cand when n = 2 it is 15. Note that when plugging n = k = 2 in (1.2.4), we obtain
26.3% = 5184. Although the new bound 15 is a considerably smaller fewnomial bound for a system
where n = k = 2, the authors of [BS07] maintain that the sharp bound is still smaller. The
case n = k = 2 is the first case where we do not know much about. In fact, prior to this thesis,
the first known construction, giving a lot of non-degenerate positive solutions of a system of two
polynomials in two variables with five monomials was essentially that of B. Haas . Such a
construction gives five non-degenerate positive solutions, and shows that the sharp upper bound
on the number of non-degenerate positive solutions is greater or equal to 5. Later on, we will call
a system of two equations in two variables with 5 distinct monomials a system of type n = k = 2.

1.3.2 Using combinatorial patchworking

Consider a system

fie(z) == fai(2) =0, (1.3.3)

where each polynomial of (1.3.3) is obtained from a polynomial )" ¢,z of (1.3.1)) by multiplying
each monomial c¢,,z" by some real power of ¢, where t is a positive parameter that will be taken

close to zero. Let V(f; ;) denote the zero set of f; , in R™. For any € € {£1}", consider the orthant
(Rog) :i={zeR" |26, >0 i=1,...,n},

and let V.(f;:) be the intersection of V'(f; ) with (Rso)¢.

O. Viro’s Theorem states that one can construct combinatorially a space Q. together with a
simplicial complex Z. C Q. such that the couple (Qe, Z.) is homeomorphic to ((Rx0)¢, Ve(fi)) for
t > 0 small enough. From this, one can recover (up to homeomorphisms) the whole hypersurface
V(fi) (for t > 0 small enough) by gluing its different parts together with their ambient spaces.

This was generalized by B. Sturmfels [Stu94] for any complete intersection V(f1,)N- NV (fs.1),
with s < n, given that the exponents of ¢ are “sufficiently generic’. When s = n, this method
can be used to construct systems with many non-degenerate positive solutions and given supports.
Recently, F. Bihan [Bih14] gave a bound on the number of non-degenerate real solutions that are
constructed using Sturmfels’ generalization of Viro’s Theorem. This bound is given by the so-called
discrete mized volume of the supports of f; ;. In fact, he proved that this bound is smaller than the
one given in Kushnirenko’s conjecture (see Subsection . When n = 2 and k£ = 1, the discrete
mixed volume is not larger than 3 and the corresponding bound is sharp (see Subsection .
When n = k = 2, it is easy to compute that the discrete mixed volume is not larger than 6 (see
Lemma in Chapter @, and it is not known if the corresponding bound is sharp.

1.3.3 Systems supported on a circuit

One of the first non-trivial cases arises when n > 2 and k£ = 1, in which case the support W
of is a set of n + 2 points in R”. F. Bihan [Bih07] proved that any polynomial system
supported on such W has at most n + 1 non-degenerate positive solutions and that this bound is
sharp. Moreover, if this bound is reached, then W is minimally affinely dependent, which means
that it is a circuit in R™. Polynomial systems supported on a circuit in Z™ whose all non-degenerate
complex solutions are positive have been studied in [Bih15] (such systems are called mazimally
positive). As a main result, it is given for any positive integer n a finite list of circuits in Z™ that
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can support maximally positive systems up to the obvious action of the group of invertible integer
affine transformations of Z".

Also for the circuit case, F. Bihan and A. Dickenstein [BD16] presented the first multivariate
version of Descartes’ rule of signs to bound the number of positive real solutions of a system
supported on a circuit, in terms of the sign variation of a sequence associated to both the exponent
vectors and the given coefficients. In fact, it is also shown that the bound they gave is sharp and
is related to the signature of the circuit.

The first time that Grothendieck’s real dessins d’enfant, which are graphs embedded on the
Riemann sphere, were used in the fewnomial context was due to F. Bihan [Bih(07]. Namely, he uses
dessins d’enfant to show the sharpness of the bound n + 1 for the number of positive solutions of
a system supported on a circuit WW C R™. He also proves using the same technique the sharpness
of bounds for the number of real solutions of such systems. As it turns out, if one can reduce a
fewnomial system to a rational polynomial function CP* — CP!, then one can hope to use real
dessins d’enfant in a fruitful way to closely study the original system. This technique gives an
interesting point of view on constructing polynomial systems with a large number of real solutions
(see Chapter [3]), characterizing such systems (see Chapter [5) and even bounding the number of
positive solutions of sparse polynomial systems (see Chapter [4)).

Sturmfels’ version of Viro’s combinatorial patchworking is yet another effective technique from
real algebraic geometry that can be used to construct polynomial systems with many real solutions.
This generalisation [Stu94] is for complete intersections of real algebraic hypersurfaces. Among
many other implementations in fewnomials, it was used by K. Phillipson and J.-M. Rojas [PR13|
proof of Lemma 1.8] to construct a polynomial system over local fields supported on a circuit that
has n + 1 positive solutions.

1.3.4 Around Kuschnirenko’s conjecture

Consider the system (1.3.1), and for i = 1,...,n, denote by m,; the number of points contained in
the support of f;. Recall that Kushnirenko’ Conjecture states that (1.3.1)) cannot have more
than

n

[Tomi—1)

i=1

non-degenerate positive solutions.

1.3.4.1 First counterexamples

The conjectural bound is not a bound on the number of isolated positive solutions. W. Fulton
gave a counterexample in [Full3] that goes as follows (see also [Stu02]). Consider the system

m

[ =02+ [[(z2 =) =0, z1(z—1)=0, 2225 —1)=0, (1.3.4)

i=1 i=1

where m > 5. Kushnirenko’s Conjecture predicts that such a system has at most (dm+1—1)(2—
1)(2 — 1) = 4m real positive solutions. However there are m? positive solutions of of the
form (i,7,1), for i, j € N* between 1 and m.

A particular case of A. Kuchnirenko’s conjecture states that when n = 2 and m; = mg = 3,
the system has at most four non-degenerate positive solutions. In an effort to disprove this
conjecture, Haas had shown in [Haa02] that
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101:106 4 11y53 _ 11y — 10y106 + 11$53 — 11z =0 (135)

has five non-degenerate positive solutions. Konstantin A. Sevastyanov, a colleague of Kushnirenko,
had found a similar counter-example much earlier. Unfortunately, this counterexample does not
seem to have been recorded and, tragically, Sevastyanov died before publishing his counterexample.

It was later shown in [LRWO03] using a case by case analysis that when n = 2 and m; = mg = 3,
the sharp bound on the number of non-degenerate positive solutions is five. Moreover, it was proved
in the same paper that if this bound is reached, then the Minkowski sum of the associated Newton
polytopes A; and Ay is an hexagon.

A simpler polynomial system

x5+ (44/31)y® —y = 4% + (44/31)2® — 2 = 0, (1.3.6)

that also has five positive solutions was discovered by A. Dickenstein, J.-M. Rojas, K. Rusek and
J. Shih [DRRO7]. In addition, they showed that such systems are rare in the following sense. They
study the discriminant variety of coefficients spaces of the polynomial system

22 ayd —y =92 4 bad — =0, (1.3.7)

with parameters (a, b, d), and show that the chambers (connected components of the complement)
containing systems with the maximal number of positive solutions are small.

1.3.4.2 A trinomial and a t-nomial

Real polynomial systems in two variables

f=9=0, (1.3.8)

where f has t > 3 non-zero terms and ¢ has three non-zero terms have been studied by T.Y. Li,
J.-M. Rojas and X. Wang [LRW03]. They showed that such a system, allowing real exponents, has
at most 2! — 2 isolated positive solutions. The idea is to substitute one variable of the trinomial
in terms of the other, and thus one can reduce the system to an analytic function in one variable

t

h(z) = Zaimk"(l — )l

i=1

where all the coefficients and exponents are real. The number of positive solutions of is
equal to that of h = 0 contained in ]0,1[. The main techniques used in [LRWO03| are an extension
of Rolle’s Theorem and a recursion involving derivatives of certain analytic functions. In fact, the
results of Li, Rojas and Wang [LRW03] are more general. Consider a polynomial system

fi=-=fa=0 (1.3.9)

in n variables, where the functions fi,..., f,_1 are trinomials and f,, has t distinct monomials.
The authors in [LRW03] show that (1.3.9) has at most n +n?+ - --+n'~! non-degenerate positive
solutions.
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The exponential upper bound 2! — 2 on the number of positive solutions of ((1.3.8) has been
recently refined by P. Koiran, N. Portier and S. Tavenas [KPTI15D] into a polynomial one. They
considered an analytic function in one variable

ST (1.3.10)

i=1 j=1

where all f; are real polynomials of degree at most d and all the powers of f; are real. Using the

Wronskian of analytic functions, it was proved that the number of positive roots of (|1.3.10) in an
3

interval I (assuming that f;(I) C]0, +o0[) is equal to % +2tmd+1t. As a particular case (taking

m =2,d=1and I =]0,1[), they obtain that h(z) = Z§:1 a;z* (1 — x)b has at most 2t%/3 + 5t

roots in .

1.3.4.3 A plane curve and a line

Interestingly, when the trinomial g of is a linear polynomial, then the sharp bound on the
number of non-degenerate real solutions of is a linear function in t.

Namely, M. Avendafio showed in [Ave(09] that such a system has either an infinite number
or at most 6t — 6 solutions in (R*)2, where the latter ones are counted with multiplicities. In
particular, he proved that the number of non-degenerate positive solutions of the latter system is
at most 2t — 2. The method used in [AveQ9] consists of substituting ze by az; + b in for
some non-zero real numbers a and b. This way, with the help of Descartes’ rule of sign applied to
the resulting univariate polynomial, one eventually obtains the bound 2¢ — 2.

1.3.5 Around a polynomial-fewnomial conjecture

A. Kushnirenko also formulated the following conjecture (see [Kus08] for more background). Con-
sider a system

fl@,y) =g(z,y) =0 (1.3.11)

of two equations in two variables, where g is a polynomial with ¢ distinct monomial terms, and f
is a polynomial of degree d.

Conjecture 1.6. The system (1.3.11)) has at most N(d,t) non-degenerate positive solutions, where
N(d,t) is a function depending only on the numbers d and t.

Sevostyanov showed in 1978 that such N(d,t) exists. However, his result (together with his
counterexample to Kushnirenko’s conjecture) was never published. According to [Sot11], this result
was the inspiration for Khovanskii to develop his theory of fewnomials.

Clearly, by Khovanskii and Bihan-Sottile bounds, this N(d,t) exists, however since (|1.3.11))
is a very particular case of the generic system , bounds and (which are
exponential in d and ¢) might be too large. M. Avendano’s previously-discussed bound [Ave(9]
shows that N(1,t) < 2t — 2, which turns out to be a sharp bound for t = 3 (see [BEHIS]).

The smallest bound so far for any values d and ¢ was discovered by P. Koiran, N. Portier and
S. Tavenas [KPT15a]. They showed that has only O(d®t + d?t®) real solutions when it
has a finite number of real solutions. Moreover, if the set of real solutions is infinite then it has at
most O(d3t + d*t3) connected components.
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1.4 Results of the thesis

We divide our main results into four chapters.

1.4.1 Chapter [3; Intersecting a sparse plane curve and a line

Chapter [3|is a joint work with F. Bihan [BEH15|]. Consider a system

flxy) =az+b-y=0, (1.4.1)

where f € Rlx,y], has t non-zero terms. In Chapter 3| all solutions in (R*)? are counted with
multiplicities. This reduces to counting the number of real roots of a polynomial f(z,ax + b),
where a,b € R and f € R[z,y| has at most ¢t non-zero terms. Substituting y by ax + b in the
polynomial f reduces the problem of computing real solutions of to computing the real
roots of f(z,ax+b). M. Avendafio showed in [AveQ9, Theorem 1.1] that has at most 6t — 4
real solutions counted with multiplicities except for the possible roots 0 and —b/a. The question
of optimality was not addressed in [Ave09] and this was the motivation for the present work. We
prove the following result.

Theorem 1.7. Let f € Rz, y] be a polynomial with at most t non-zero terms and let a,b be any
real numbers. Assume that the polynomial g(x) = f(x,ax + b) is not identically zero. Then g has
at most 6t — 7 real roots counted with multiplicities except for the possible roots 0 and —b/a that
are counted at most once.

The methods used in proving the latter results are elementary, and constitute a refined version
of those used in [Ave(9]. This might look as a small improvement of the main result of [Ave09].
In fact, this refinement is a non-trivial one, and the bound in Theorem is optimal at least for
t=3.

Theorem 1.8. The maximal number of real intersection points of a real line with a real plane
curve defined by a polynomial with three non-zero terms is eleven.

Explicitly, the real curve with equation
—0.002404 2y'® 429 2%y 4+ 23y =0 (1.4.2)

intersects the real line y = = + 1 in precisely eleven points in R2.

The strategy to construct this example is first to deduce from the proof of Theorem [1.7] some
necessary conditions on the monomials of the desired equation. Then, the use of real Grothendieck’s
dessins d’enfant in a novel way helps to test the feasibility of certain monomials, since manipulating
this method gives a clear representation of the topology of the graph of « — f(z,x+1). Ultimately,
computer experimentations lead to the precise equation .
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Figure 1.1: The blue curve represents the graph of x — f(z,z + 1), and the red line
represents the first-coordinate axis. (Some parts of the curve is stretched vertically on
purpose for more clarity.)

1.4.2 Chapter Positive intersection points of a trinomial and a t-
nomial curves

Consider a system where f has ¢ > 3 non-zero terms and g has three non-zero terms.
Assume that the latter system has a finite number of solutions. Let S(3,t) denote the maximal
number of non-degenerate positive solutions a system can have. We prove the following
result in Section [4.2]

Theorem 1.9. We have S(3,t) <3-2t72 — 1.

Note that since the number of positive solutions of two trinomials in two variables is bounded
by five (see [LRWO3]), the bound &(3,t) is sharp for ¢ = 3. Moreover, for ¢t = 4,...,9, this new
bound is smaller than the bounds 2! — 2 and 2t3/3 + 5¢, obtained in [LRW03] and [KPTTI5b]
respectively, and shows for example that 6 < §(3,4) < 11.
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Recall that substituting one variable of the trinomial g of (1.3.8]) in terms of the other reduces
the system to an analytic function in one variable

t

h(z) = Zaix’“(l —x)b,

=1

The number of positive solutions of is equal to that of h = 0 contained in ]0,1[. We
prove Theorem using the same approach that was considered in [LRWO03| i.e. we consider a
recursion involving derivatives of analytic functions in one variable associated to the system .
Beginning with the function f; = h, at each step 1 < i < t, we are left with a function f; defined
as a certain number of derivatives of f;_; multiplied by powers of x and of (1 — z). Using Rolle’s
Theorem for each f;, one can bound the number of its roots contained in ]0,1[ in terms of the
roots of f;_1 in the same interval. It turns out that at the step t — 2, we are reduced to bound the
number of roots in ]0, 1] of the equation ¢(z) = 1, where

(1 — x)? P(x)

o) = g,

a,B € Q, and both P and @ are real polynomials of degree at most 272 — 1.
The larger part of Chapter [4]is devoted to the proof in Section of the following result.

Theorem 1.10. We have §{zx €]0,1[ |¢p(x) =1} < degP + deg@ + 2.

Choosing m € N such that both ma and mS are integers, we get a rational function ¢ := ¢™ :
CP' — CP'. The inverse images of 0, 1, co are given by the roots of P, @Q, ¢ — 1, together
with 0 and 1 (if a3 # 0). These inverse images lie on the graph I' := ¢~ }(RP!) ¢ CP!, which
is an example of a Grothendieck’s real dessin d’enfant. Although this latter object I' appears
in Chapter [4 as well, we use it this time in a yet another resourceful way. In fact, there are
many restrictions on the topology of the graph of ¢ that appear explicitly as restrictions on
I' = ¢ }(RPY). Namely, critical points of ¢ correspond to vertices of I'. The number of roots of
©—11in]0, 1[ is controlled by the number of a certain type of critical points of ¢ called useful positive
critical points. By doing a delicate analysis on I', we bound the number of vertices corresponding
to these critical points in terms of deg P and deg Q).

We consider in Section [£.4] the case t = 3 i.e. the case of two trinomials in two variables. Recall
that when the maximal number of positive solutions is attained, the Minkowski sum A; + A, is an
hexagon (see [LRWO03]). In terms of normal fans, this means that the normal fan of the Minkowski
sum Aj; + As, which is the common refinement of the normal fans of A; and As, has six 2-
dimensional cones (and six 1-dimensional cones). We give the following additional constraints on
the Minkowski sum of A; and A when has five positive solutions. We say that A; and
A, alternate if every 2-dimensional cone of the normal fan of A; contains a 1-dimensional cone of
the normal fan of Ay having only the origin as a common face. A further analysis of I' in the case
t = 3 allows us to obtain the following result.

Theorem 1.11. If the system (1.3.8) has 5 positive solution, then Ay and Ay do not alternate.

The Newton triangles A; and As do not alternate means that there exist two consecutive edges
of A1+ Ay which are translate of two consecutive edges of either Ay or A,. Figure [7.2]illustrates
this theorem for the system (7.3.6)), and we provide another example in Section
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Figure 1.2: The Newton polytopes, their Minkowski sum and the associated normal fans

of (735).

1.4.3 Chapter Characterization of circuits supporting polynomial
systems with the maximal number of positive solutions

Recall that a circuit W C R"™ is a set of n+ 2 distinct points that are minimally affinely dependent.
A very recent generalization of Descartes’ rule of sign was developed by F. Bihan and A. Dickenstein
in [BD16]. This gave some conditions on both the circuit and the coefficient matrix that are
necessary for the system to have m + 1 non-degenerate positive solutions. More precisely, the
authors in [BDI6] show that if such a system has n + 1 non-degenerate positive solutions, then
all maximal minors of the coefficient matrix are nonzero and any affine relation Z?jf Nw; =0
on W has the same number (up to 1 if n is odd) of positive coefficients as that of negative ones.
In this chapter, we completely characterize the circuits which are supports of polynomial systems

with n + 1 non-degenerate positive solutions.

Theorem 1.12. A circuit W in R™ supports a system with n+ 1 non-degenerate positive solutions
if and only if there exists a bijection

1,....n+2}) — W
) _—  w;

such that every affine relation on W can be written as

s n+2
E Q;W; = g Q;W;
1=1 s+1

where s = [(n+2)/2] and all o; are positive numbers which satisfy

s+r r4+1

-
Zai< Zai<2ai for r=1,...,s—1 4f n iseven
i=1

i=s5+1 i=1
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or
T s+r+1 r+1
g a; < g al-<§ a; for r=1,...,s—1 if n s odd.
i=1 i=s42 i=1

F. Bihan proved in [Bih15] that if a circuit in Z™ supports a maximally positive system with n+41
non-degenerate positive solutions, then it has a primitive affine relation (i.e. affine relation with
coprime integer coefficients) as in Theorem with a3 = a2 = 1 and all other coefficients are
equal to two. This can be seen as a consequence of Theorem (see Example Section .
Indeed, if W supports a maximally positive system with n + 1 non-degenerate positive solutions,
then the subgroup of Z" generated by W is Z". Moreover, if 23:1 Qw; = ZZLZ o;w; is a primitive
affine relation, then > 7  a; = Z:L:lz a; = n+ 1 (see [Bih1h)] for more details), which together
with inequalities in Theorem [1.12 imply the desired equalities. In order to prove Theorem [1.12
one can reduce to the case where W C Z™ (see the first part of Chapter . We prove the “only if”
part of Theorem [1.12|in the following way. Consider a polynomial system supported on a circuit
with n equations in n variables that has the maximal number of non-degenerate positive solutions.
We associate to it using Gale duality (see Section , a univariate function

n+1

ely) =TT P
=1

where P; a polynomial of degree 1 that depends on the equations of the system, Z?:ll Ai(w; —wp)
is a linear relation on the vectors w; — wg and the non-degenerate positive solutions of the initial
system are in bijection with solutions of ¢(y) = 1 contained in

Ay ={yeRsyo | P(y)>0,i=1,...,n+1}.

The homogenization of ¢ is a rational map CP! — CP!, so that the inverse image of RP! by this
homogenization is the real dessin d’enfant I' (see Chapter [2). Since the valencies of the vertices
of I are controlled by the integers A; and the roots of P, for ¢ = 1,...,n+ 1, by analysing I, we
obtain the inequalities of Theorem [1.12

The solutions of ¢(y) =1 in A, are roots of the Gale polynomial

Gy=[[Pw- ] P w (1.4.3)

Ai>0 Ai<0

in the same interval. In [PRI3| proof of Lemma 1.8], K. Phillipson and J.-M. Rojas construct poly-
nomial systems supported on a circuit in Z™ with n+1 non-degenerate positive solutions using Viro
polynomials P;1(y) = a; +t*'b;, where a;,b;,; € R, and ¢ > 0 is a parameter that will be taken
small enough. They apply the version of Viro’s combinatorial patchworking developed in [Stu94]
which involves mixed subdivision of Newton polytopes. Here, we also use Viro polynomials P; .,
and look directly at the roots of the corresponding Gale polynomial in A;. The inequalities in
Theorem [1.12| appear explicitly as being necessary to construct polynomial systems supported on
a circuit in Z™ with n + 1 non-degenerate positive solution using Viro polynomials P; ;.

1.4.4 Chapter [ Constructing polynomial systems with many positive
solutions

Tropical geometry is a new domain in mathematics that is situated at the junction of fields such
as toric geometry, complex or real geometry, and combinatorics [Mik06, [MRO5, IMS15]. It turns
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out, that Sturmfels’ generalization of Viro’s Theorem can be reformulated in the context of trop-
ical geometry (see [Mik04] Rul01]). This makes tropical geometry an effective tool to construct
polynomial systems with prescribed support and many positive solutions.

Recall that the best known fewnomial bound on the number of non-degenerate positive solu-
tions for a real polynomial system of n equations in n variables supported on a set of n + k + 1
points for k,n > 1 is equal to %%32(3)71’“ [BSO7]. In fact, the same paper contains the better
upper bound 15 when n = k = 2. However, the best previously known constructions give 5 non-
degenerate positive solutions (c.f. [Haa02]). The motivation behind this chapter is to implement
Sturmfels’ version of Viro’s combinatorial patchworking and other tools and results (c.f. Chap-
ter 2, Subsection developed in tropical geometry for constructing a system of two equations
in two variables and five monomials (a system of type n = k = 2 for short) having many positive
solutions.

Let K be the field of generalized locally convergent Puiseux series

a(t) = Z at”,

reR

where R C R is a well ordered set and a(t) is a complex series convergent for ¢ > 0 small enough.
This is an algebraically closed field. Consider the subfield RK of K of real generalized Puiseux
series, that is all «,. appearing in a(t) are real numbers. We consider in this chapter a sparse
(Laurent) polynomial system

fi(z) = fa(2) = 0, (1.4.4)

with equations defined over RK. We assume that has finitely many solutions, and all of
them are non-degenerate. A positive element a(t) of K is an element of RK* whose first-order
term has positive coefficient.

To a Laurent polynomial f(z) = -, cwz® € R[z], one associates a tropical polynomial

ftrop($> — o« Z Val(cw)x“”’,

wew

where val(c,,) is minus the order (in the classical sense) of the Puiseux series ¢,,, and the operations
are the tropical ones (the sum is the max, and the product is the classical sum). The associated
tropical hypersurface T is the corner locus of the piecewise-linear convex function R" — R”,
T — fiop(z). By Kapranov’s Theorem [Kap00] (see Subsection , the tropical hypersurface
T coincides with the closure of

Val ({z € (K*)" | f(z) =0}),

where Val is the extension of the function val coordinate-wise. The positive part of T is the
closure of Val ({z € (RKs¢)" | f(2) =0}).

Consider now again polynomials fi, fo € RK[2!, 23] defining two tropical curves Ty, Ty C R2.
Assume for the moment that T} and T intersect transversally, which means that each intersection
point is isolated and contained in the relative interiors of one 1-dimensional linear piece of T and
one 1-dimensional linear piece of T5. Then by Sturmfels’ generalization of Viro’s theorem, each
intersection point of 77 and T, contained in both positive parts (positive intersection point for
short) lifts to a unique solution of in (RK+¢)?, which gives a positive solution of a real
system ¢1(z) = g2(2) = 0 by taking ¢ > 0 small enough. Recall that in the case n = k = 2
(meaning that equations of T and T3 have a total of five monomials), the number of transversal
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intersection points of 77 and T is bounded from above by six (see Subsection [1.3.2). We prove
that this bound is sharp and can be realized by positive intersection points.

Proposition 1.13. There exist two plane tropical curves Ty and Ts defined by equations containing
a total of five monomials and which have siz positive transversal intersection points.

Therefore, using Sturmfels’ generalization of Viro’s theorem (as explained above), this gives a
real system of type n = k = 2 having six non-degenerate positive solutions. In order to get a real
system of type n = k = 2 with more than six non-degenerate positive solutions, we thus consider
tropical curves T; and T5 which do not intersect transversally.

Note that Ty N T, is piecewice-linear and its linear pieces are either isolated points or line
segments. Luckily, if a linear piece £ C Ty NT5 is an isolated point, then results in [Kat09] [Rab12
OP13] and [BLAM12| show that ¢ lifts to a solution of in (K*)2, and then non-degenerate
positive solutions of (|1.4.4)) with valuation equal to £ can be estimated by computing the real
reduced system of with respect to £ (see Chapter [2] Subsection . However, if such a
linear piece £ has dimension 1, then £ is an infinite set containing a finite (and possibly empty) set of
points that are valuations of non-degenerate positive solutions of . Locating such valuations
does not come easily. In fact, there is only one known method for achieving this, called tropical
modification (see [Mik06, BLAMI2]). This problem is addressed in Section [6.2] of Chapter [6] using
another approach. Namely, for each linear piece £ of dimension 1, we associate a univariate Viro
polynomial f; ¢ so that all the first-order terms of non-degenerate positive solutions of with
valuations in the relative interior of £ can be recovered from both the reduced system of
with respect &, and the Viro polynomial f; c.

We now consider a system of type n = k = 2. Assume that no three points of the
support of the system belong to a line. We prove in Section [6.3] that one can associate to such a
system a new system

ao + 1"t 4 azyy Yy +ast®yyy® = 0, (1.4.5)
bo + Y + by yn? + bytPyynt = 0, a

with polynomials in RK[ylil, yzil], that has the same number of positive non-degenerate solutions

as (1.4.4]), and satisfying that all a;, b; have zero order, all m;,n; belong to Z with mq,ns > 0, and
both «, [ are real numbers.
The two main results of Chapter [6] are the following.

Theorem 1.14. If (a, 8) # (0,0), then (1.4.5) has at most nine non-degenerate positive solutions.

We prove Theorem in Section Note that if (o, 8) = (0,0), then there is nothing that
can be done using tropical geometry. Indeed, the task of bounding the number of non-degenerate
positive solutions of becomes equivalent to computing the number of positive solutions of
a real polynomial system of type n = k = 2.

Theorem 1.15. There exists a system (1.4.5)) that has seven non-degenerate positive solutions.
The construction of a system ([1.4.5)) that has seven non-degenerate positive solutions is made
in Section Namely, for any 0 < « < 7p, the system

—1+yf +ydys — toy Myg =0

(1.4.6)
—1+0.36008t7° + ¢ + (1 — 0.36008t%)yyS — (44/31) 5ty 2y

Il
o

has seven non-degenerate positive solutions.
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We made a tedious case-by-case analysis to get necessary conditions for (1.4.5) to have more
than six non-degenerate positive solutions. As a by-product, we obtain in Sections [6.6] and [6.7] the
following result.

Theorem 1.16. If («, 5) # (0,0), and one of the following is true

1. Fori=0,2, the coefficient of the first order term of a; is different from that of b;,

2. a#p,
3. a=p4<0,

then (1.4.5) has at most six non-degenerate positive solutions.



Chapter 2

Preliminaries

2.1 A brief introduction to real dessins d’enfant

For more details, see [Ore03, Bru06, Bih07] for example. Consider a real rational map ¢ =

P
— : C — C, where P and @ are two real polynomials. The degree of ¢ is the maximum

Q
of the degrees of P and ). We extend ¢ to a rational homogeneous function CP' — CP!,

(zo: 1)~ (1: P/Q), that we denote again by . Define
I':=p Y(RPY).

This is a real graph on CP! invariant with respect to the complex conjugation and which contains
RP!. Any connected component of CP! \ I' is homeomorphic to an open disk. Moreover, each
vertex of I has even valency, and the multiplicity of a critical point with real critical value of ¢
is half its valency. The graph I' contains the inverse images of (1 : 0), (0 : 1) and (1 : 1), which
are the sets of roots of P, @ and P/Q — 1 respectively. Denote by the same letter p (resp. ¢
and 7) the points of I' which are mapped to (1 : 0) (resp. (0 : 1) and (1 : 1)). Orient the real
axis on the target space via the arrows 0 — oo — 1 — 0 (orientation given by the decreasing
order in R), which is equivalent to orienting RP! via the arrows (1:0) — (0: 1) — (1 :1). Pull
back this orientation by ¢, the graph I' becomes an oriented graph, with the orientation given by
arrows p — q — r — p. A cycle of T' is the boundary of a connected component of CP™\I'. Any
such cycle contains the same non-zero number of letters r, p , ¢ (see Figure . We say that
a cycle obeys the cycle rule. The graph T is called real dessin d’enfant associated to ¢. Since
T' is invariant under complex conjugation, it is determined by its intersection with one connected
component H (for half) of CP! \ RP!. Since ¢ is real, its degree is the sum of the degrees of its
restrictions to connected components of CP! \ T'. To represent the real dessin d’enfant, we draw
a horizontal line corresponding to the real projective line and draw below one half HT of T', see
Figure [3.7] for instance.

Clearly, the arrangement of real roots of P, @ and P/Q — 1 together with their multiplicities
can be extracted from the graph I'. We encode this arrangement together with the multiplicities
by what is called a root scheme.



2.2. A brief introduction to tropical geometry 26

q

Figure 2.1: Cycles of I' obeying the cycle rule.

Definition 2.1 ([Bru06l [Ore03|). A root scheme is a k-tuple (I1,m1),..., (g, my) € ({p,q, 7} %
N)*. A root scheme is realizable by polynomials of degree d if there exist real polynomials P and Q
such that ¢ has degree d and if x1 < ... < xy, are the real roots of P, Q and P/Q — 1, thenl, =p
(resp. q, r) if z; is a root of P (resp. Q, P/Q — 1) and m; is the multiplicity of ;.

Conversely, suppose we are given a real graph I' ¢ CP' that is invariant under complex
conjugation, together with a real continuous map ¢ : I' — RP'. Denote the inverse images of 0,
oo and 1 by letters p, ¢ and r, respectively, and orient I with the pull back by ¢ of the above
orientation of RPL. This graph is called a real rational graph [BruQ6] if any vertex of T' has even
valency and any connected component of CP!\ T' is homeomorphic to an open disk. Then, for any
connected component D of CP! \ T, the map $jap is a covering of RP! whose degree dp is the
number of letters p (resp. ¢, r) in @D. We define the degree of T" to be half the sum of the degrees
dp over all connected components of CP! \ T'. Since ¢ is a real map, the degree of T' is also the
sum of the degrees dp over all connected components D of CP! \ T' contained in one connected
component of CP1\ RP!.

The following result [Ore03|] explains the importance of real rational graphs in computing the
roots of P/Q — 1.

Proposition 2.2 (Orevkov). A root scheme is realizable by polynomials of degree d if and only if
it can be extracted from a real rational graph of degree d on CP?.

We show now how to prove the if part in Proposition (see [Bih07, Bru06, [Ore03]). For each
connected component D of CP'\T, extend Pjop to a branched covering of degree dp (use the map
2+ 299) of one connected component of CP! \ RP?, so that two adjacent connected components
of CP'\ T project to different connected components of CP! \ RP!. Then, it is possible to glue
continuously these maps in order to obtain a real branched covering ¢ : CP! — CP! of degree
d. The map ¢ becomes a real rational map of degree d for the standard complex structure on the
target space and its pull-back by ¢ on the source space. There exist then real polynomials P and
@ such that P/Q has degree d and ¢ = P/Q), so that the points p (resp. ¢, r) correspond to the
roots of P (resp. @, P/Q — 1) and I' = ¢} (RP?).

2.2 A brief introduction to tropical geometry

The notations in this section are taken from [BLAM12l [BB13l [Renl5l [GL15].
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2.2.1 Polytopes and subdivisions
Let R™ denote the n-dimensional Euclidean space, endowed with the standard inner product

(,): R*xR—>R

Definition 2.3. A rational polyhedron in R™ is a conver set of points x, defined by a finite
number of inequalities of type
(z,w) <c,

where w € Z™ and ¢ € R".

If a rational polyhedron is closed, then it is called an integer convex polytope. All polytopes
considered in Chapter [] are integer convex.

Definition 2.4. A rational polyhedral complex is a finite set of rational polyhedra P = {A;};
such that

1. for every A € P, if A" is a face of A, then A’ € P, and
2. if AA" € P, then ANA' is a face of both A and A’.

Let F be a field of characteristic zero. For z = (21,...,2,) € F" and w = (w!,...,w") € R",
set 2% = 271”1 - 2%". Consider a polynomial f = Y owew Cwz? € Flzft, . 25, with W # 0 a
finite subset of Z™, and ¢,, € F*.

Definition 2.5. The Newton polytope A(f) of f is defined to be the convex hull Conv(W) of
W.

Definition 2.6. A polyhedral subdivision of an integer convex polytope A is a set of integer
convex polytopes {A;}ier such that

L] UiGIAi = A, and

o ifi,j €1, then if the intersection A; NA; is non-empty, it is a common face of the polytope
A; and the polytope A;.

Definition 2.7. Let A be an integer convez polytope in R™ and let T denote a polyhedral subdivision
of A consisting of integer convex polytopes. We say that T is regular if there exists a continuous,
convezx, piecewise-linear function ¢ : A — R which is affine linear on every simplex of T.

Let A be an integer convex polytope in R and let ¢ : A N Z™ — R be a function. We denote
by A(¢) the convex hull of the graph of ¢, i.e.,

A(¢) == Conv ({(i,4(i)) e R™ |iec ANZ"}).

Then the polyhedral subdivision of A, induced by projecting the union of the lower faces of A(gb)
onto the first n coordinates, is regular. In the following, we describe how we define ¢ using the
polynomials that we will be working with.
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2.2.2 Tropical polynomials and hypersurfaces

A locally convergent generalized Puiseux series is a formal series of the form

a(t) = Zartr,

reR

where R C R is a well-ordered set, all «,- € C, and the series is convergent for ¢ > 0 small enough.
We denote by K the set of all locally convergent generalized Puiseux series. It is naturally a field
of characteristic 0, which turns out to be algebraically closed.

Notation 2.8. Let coef(a(t)) denote the coefficient of the first term of a(t) following the increasing
order of the exponents of t. We extend coef to a map Coef : K" — R"™ by taking coef coordinate-
wise, i.e. Coef(ai(t),...,a,(t)) = (coef(ai(t)),...,coef(a,(t)))

An element a(t) = > a,t" of K is said to be real if o, € R for all , and positive if a(t) is
rER
real and coef(a(t)) > 0.
Denote by RK (resp. RK~) the subfield of K composed of real (resp. positive) series. Since
elements of K are convergent for ¢ > 0 small enough, an algebraic variety over K (resp. RK) can be
seen as a one parametric family of algebraic varieties over C (resp. R). The field K has a natural

non-archimedian valuation defined as follows:

val : K — RU{—o0}
0 — —00
Sapt"#0 — —ming{r | a, # 0}.
reR

The valuation extends naturally to a map Val : K" — (RU{—00})™ by evaluating val coordinate-
wise, i.e. Val(zy,...,2,) = (val(z1),...,val(z,)). We shall often use the notation val and Val
when the context is a tropical polynomial or a tropical hypersurface. On the other hand, define
ord := — val, with ord(0) = 400, and use it as a notation when the context is an element in RK"

or a polynomial in RK[zlﬂ, cel zzﬂ]

Convention 2.9. For any s € K, we have coef(s) =0 s =0 and ord(s) = +oc0o < s=0

Consider a polynomial

f(z):= Z cw?? € K[2EY, ..., 251,
wew

with W a finite subset of Z™ and all ¢,, are non-zero. Let V; = {z € (K*)? | f(z) = 0} be the zero
set of f in (K*)"
The tropical hypersurface V;mp associated to f is the closure (in the usual topology) of the
image under Val of V;:
VP = Val(Vy) C R",

endowed with a weight function which we will define later. There are other equivalent definitions
of a tropical hypersurface. Namely, define

R

v: W —
w — ord(cy).
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Its Legendre transform is a piecewise-linear convex function

Lv): R — R
x lrune%{@,w)fz/(w)}

We have the fundamental Theorem of Kapranov [Kap00].
Theorem 2.10 (Kapranov). A tropical hypersurface Vftmp is the corner locus of L(V).

The corner locus of L£(v) is the set of points at which it is not differentiable. Tropical hypersur-
faces can also be described as algebraic varieties over the tropical semifield (RU{—oc}, “+7, “x”),
where for any two elements z and y in RU {—o0}, one has

“r4+y” =max(z,y) and “zxy’ =x+y.

A multivariate tropical polynomial is a polynomial in R[z1, ..., z,], where the addition and multi-
plication are the tropical ones. Hence, a tropical polynomial is given by a maximum of finitely many
affine functions whose linear parts have integer coefficients and constant parts are real numbers.
The tropicalization of the polynomial f is a tropical polynomial

firop(T) = &a}/}\(}{(x,w> + val(cy)}-

This tropical polynomial coincides with the piecewise-linear convex function £(v) defined above.
Therefore, Theorem asserts that Vftmp is the corner locus of fi,op. Conversely, the corner
locus of any tropical polynomial is a tropical hypersurface.

2.2.3 Tropical hypersurfaces and subdivisions

A tropical hypersurface induces a subdivision of the Newton polytope A(f) in the following way.
The hypersurface V; P is a (n—1)-dimensional piecewise-linear complex which induces a polyhedral
subdivision = of R™. We will call cells the elements of =. Note that these cells have rational slopes.
The n-dimensional cells of = are the closures of the connected components of the complement of
V;mp in R™. The lower dimensional cells of Z are contained in VftrOp and we will just say that they
are cells of Vf"Op.

Consider a cell £ of V;mp and pick a point z in the relative interior of £&. Then the set
I, ={we A(f)NZ" | T2 € R, firop(x) = (z,w) + val(cy)}

is independent of x, and denote by A the convex hull of this set. All together the polyhedra A
form a subdivision 7 of A(f) called the dual subdivision, and the cell A is called the dual of &.
Both subdivisions 7 and = are dual in the following sense. There is a one-to-one correspondence
between = and 7, which reverses the inclusion relations, and such that if As € 7 corresponds to
£ € E then

1. dim& + dim Ag = n,
2. the cell £ and the polytope A¢ span orthogonal real affine spaces,

3. the cell ¢ is unbounded if and only if A, lies on a proper face of A(f).
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Note that 7 coincides with the regular subdivision of Definition [2.7] described in Subsection 2:2.1]
Indeed, let A(f) € R™ x R be the convex hull of the points (w,v(w)) with w € W and v(w) =
ord(ey). Define
b A(f) — R
v — min{y | (5,y) € A}

Then, the the domains of linearity of & form the dual subdivision 7.

Counsider a facet (face of dimension n—1) £ of V;mp, then dim A¢ = 1 and we define the weight
of £ by w(§) := Card(A¢ NZ™) — 1. Tropical varieties satisfy the so-called balancing condition.
Since in Chapter @ we only work with tropical curves in R2, we give here this property only for
this case. We refer to [Mik06] for the general case. Let T'C R™ be a tropical curve, and let v be a
vertex of T'. Let &1,...,& be the edges of T adjacent to v. Since T is a rational graph, each edge
& has a primitive integer direction. If in addition we ask that the orientation of &; defined by this
vector points away from v, then this primitive integer vector is unique. Let us denote by u, ; this
vector.

Proposition 2.11 (Balancing condition). For any vertexz v, one has

Z w(&)uv’i = 0

i=1

2.2.4 Intersection of tropical hypersurfaces

Consider polynomials f1,..., fx € K[zfﬂ, e, ZzH ] Fori=1,...,k, let A; CR™ (resp. T; C R™)
denote the Newton polytope (resp. tropical curve) associated to f;. Recall that each tropical curve
T; defines a piecewise linear polyhedral subdivision Z; of R™ which is dual to a convex polyhedral
subdivision 7; of A;. The union of these tropical curves defines a piecewise-linear polyhedral
subdivision = of R™. Any non-empty cell of = can be written as

E=&N--N&

with & € Z; for i = 1,..., k. We require that £ does not lie in the boundary of any &;, thus any cell
¢ € E can be uniquely written in this way. Denote by 7 the mixed subdivision of the Minkowski
sum A = A 4 -+ + Ay induced by the tropical polynomials f1,..., fx. Recall that any polytope
o € T comes with a privileged representation ¢ = g1 + -+ 4+ 0} with 0; € 7; for i = 1,..., k. The
above duality-correspondence applied to the (tropical) product of the tropical polynomials gives
rise to the following well-known fact (see [BB13] for instance).

Proposition 2.12. There is a one-to-one duality correspondence between = and T, which reverses
the inclusion relations, and such that if o € T corresponds to £ € =, then

1. ifE=&nN---N & with& € Z; fori=1,...,k, then o has representation o = o1+ -+ 0y
where each o; is the polytope dual to &;.

2. dim¢é +dimo =n,
3. the cell & and the polytope o span orthonogonal real affine spaces,

4. the cell & is unbounded if and only if o lies on a proper face of A.
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Notation 2.13. In what follows, we denote such a o by A¢ and we say that each polytope A¢ a
maixed polytope of T.

Definition 2.14. A cell § is transversal if it satisfies dim(A¢) = dim(Ag, ) + -+ - + dim(Ag, ),
and it is non transversal if the previous equality does not hold.

2.2.5 Generalized Viro theorem and tropical reformulation

An important direction in real algebraic geometry is the construction of real algebraic hypersurfaces
with prescribed topology (see [Ris92] [Vir84] or [Vir89) for example). Central to these developments
is a combinatorial construction due to O.Ya. Viro, which is based on regular triangulations of
Newton polytopes. Using this technique, significant progress has been made in the study of low
degree curves in the real projective plane (Hilbert’s 16th problem). Since Chapter |§| of this thesis
concerns algebraic sets of dimension zero contained in (Rs)”, we only describe in this section how
to use combinatorial patchworking in that orthant of R™.

Following the description of B. Sturmfels [Stu94], we recall now Viro’s Theorem for hypersur-
faces. Let W C Z™ be a finite set of lattice points, and denote by A the convex hull of W. Assume
that dimA = n and let ¢ : W — Z be any function inducing a regular triangulation 7, of the
integer convex polytope A (see Definition . Fix non-zero real numbers ¢,,, w € W. For each
positive real number ¢, we consider a Laurent polynomial

fi(z1, -y 2n) = Z Cot?(W) 2, (2.2.1)

weWw

Let Bar(r,) denote the first barycentric subdivision of the regular triangulation 7,,. Each max-
imal cell p of Bar(7,) is incident to a unique point w € W. We define the sign of a maximal cell p
to be the sign of the associated real number ¢,,. The sign of any lower dimensional cell A € Bar(r,)
is defined as follows:

+ if sign(u) =+ for all maximal cells p containing A,
sign(A) := ¢ — if sign(u) = — for all maximal cells p containing ),
0 otherwise.
Let Z(7,, f) denote the subcomplex of Bar(7,) consisting of all cells A with sign(\) = 0, and

let V4 (f:) denote the zero set of f; in the positive orthant of R™. Denote by Int(A) the relative
interior of A.

Theorem 2.15 (Viro). For sufficiently small t > 0, there exists a homeomorphism (Rso)™ —
Int(A) sending the real algebraic set Vi (f;) C (Rs0)™ to the simplicial complex Z(7,, f) C Int(A).

Naturally, a signed version of Theorem holds in each of the 2" orthants
(Rso) :=A{(x1,...,2n) € (R*)" | sign(x;) =¢; fori=1,...,n},

where € € {+,—}". In fact, O. Viro proves a more general Theorem for Theorem in which
he defines a set that is homeomorphic to the the zero set V(f;) C R™ (not only the positive zero
set Vi (f+)) by means of gluing the zero sets of f; contained in all other orthants of R”™.

We now reformulate Theorem [2.15using tropical geometry. We consider g := f; as a polynomial
defined over the field of real generalized locally convergent Puiseux series, where each coefficient
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cot?™) € RK* of g has only one term. Therefore coef(c,,t#(®)) = ¢, val(c,t?™)) = —p(w), and
we associate to g a tropical hypersurface Vgtmp as defined in Subsection Recall that V;roP
induces a subdivision Z, of R™ that is dual to 7,. The tropical hypersurface Vgtmp is homeomorphic
to the barycentric subdivision Bar(7,). Indeed, 7, is a triangulation, and thus Bar(7,) becomes
dual to 7, in the sense of the duality described in Subsection [2.2.3]

We define for each n-cell { € 2y, dual to a O-face (vertex) w of the triangulation 7,, a sign
e(w) € {+, —}, to be equal to the sign of c,,.

Definition 2.16. The positive part, denoted by Vgtﬁrip, is the subcomplex of VP consisting of
all (n—1)-cells of Vgt’rolD that are adjacent to two n-cells of V;’“’p having different signs. A positive
facet & is an (n — 1)-dimensional cell of V;r_fp.

The following is a Corollary of Mikhalkin [Mik04] and Rullgard [Rul01] results, where they
completely describe the topology of V(f;) using amoebas.

Theorem 2.17 (Mikhalkin, Rullgard). For sufficiently smallt > 0, there exists a homeomorphism
(Rs0)™ — R™ sending the zero set Vi (fi) C (Rso)™ to Vgt}rip C R™.

B. Sturmfels generalized Viro’s method for complete intersections in [Stu94]. We give now a
tropical reformulation of one of the main Theorems of [Stu94].
Consider a system

fre(z, o oizn) = = foa(z1, ..., 2n) =0, (2.2.2)

of k equations, where all f;; are polynomial (2.2.1). For ¢ = 1,...,k, we define as before g; :== f; ;
as a polynomial in RK[21, ..., 25, Let Vi (fis,..., fer) C (Rsg)” denote the set of positive

solutions of (2.2.2)).

Theorem 2.18 (Sturmfels). Assume that the tropical hypersurfaces V;f‘)p,...,V;}fOp intersect
transversally. Then for sufficiently small t > 0, there exists a homeomorphism (Rso)™ — R™ send-
ing the real algebraic set Zy(f14,..., fur) C (Rso)™ to the intersection V;lr:)_f N~ N V;):?_f c R™.

Similarly to O. Viro’s work, B. Sturmfels generalizes Theorem for the zero set
V(fit,---s Jrr) CR™ (see [Stud4, Theorem 5]).
2.2.5.1 Transversal intersection points and discrete mixed volume

Assume now that the number of polynomials in (2.2.2)) is equal to that of variables (i.e. k =

n), and assume that the tropical hypersurfaces Vgtlr‘)lD7 ey VgtTfOp intersect transversally. Then the
intersection set Vi"P(g1,...,gn) = V;:f N---N V;:?_E is a (possibly empty) set of points in
R™. Each point p of V_f_mp (g1,---,9n) is expressed in a unique way as a transversal intersection

&4 N N&, 4, where for ¢ = 1,...,n, the cell § + C V;fcf is a positive cell. Theorem m
is a powerful tool for constructing polynomial systems with many non-degenerate positive
solutions.

A consequence of F. Bihan’s more general result [Bih14] is a bound on the number of positive
mixed points for a system . For any number 7 of finite sets Wy, ..., W, in R", and for any
non-empty I C [r] = {1,2,...,r}, write Wy for the set of points } ., w; over all w; € W; with
1 € I. The associated discrete mixed volume of Wy, ..., W, is defined as

DO, W) =) (=1 My, (2.2.3)

IC[r]
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where the sum is taken over all subsets I of [r] including the empty set with the convention that
[Wp| = 1. Denote by W; the support of g; for i = 1,...,n. Recall that the tropical hypersurfaces
associated to g1, ..., g, intersect transversally.

Theorem 2.19 (Bihan). The number g{V,IP N --- NV P} is less or equal to the discrete mized
volume D(Wy, ..., Wy).

Obviously, we have
HVAD 0 AV} S VP 0 V)
Moreover, Theorem 1.4 of [Bih14] states that for any finite sets Wy, ..., W, C R™, we have

DW,.... W) < TT(Wil = D).
]

i€(r

Combining the latter result with Theorem shows that Kushnirenko’s conjecture is true for
polynomial systems constructed by the combinatorial patchworking method of Viro, or equivalently,
for tropical polynomial systems given by transversal intersections of tropical hypersurfaces.

To our knowledge, we do not know if the discrete mixed volume bound is sharp for any poly-
nomial system with n equations in n variables satisfying that the associated tropical hypersurfaces
intersect transversally. An interesting direction to start, is to look at a system such that
all polynomials of have the same support W. For example, when |[W| = 4, then the bound
of Theorem is 3 and is sharp, see [Bih07].

When |[W| =5 and n = 2, we have D(W, W) = 6. We construct using combinatorial patch-
working (Theorem a polynomial system of two equations in two variables having a total of
five distinct monomials and six non-degenerate solutions in (Rs)?. Thus proving that the bound
of Theorem [2.10]is sharp when n = 2 and Wy = W, = 5.

2.2.6 Reduced systems and non-transversal intersections

Theorem|2.18)is only adapted for the case where the tropical intersections are transverse. Therefore,
we need other machinery to locate the valuations of positive solutions.

2.2.6.1 Types of non-transversal cells

In Chapter [6] of this thesis, we only work with tropical hypersurfaces in dimension two. Therefore,
we classify the types of mixed cells £ in the case where two tropical plane curves intersect non-
transversally at a cell £&. Let fo denote the relative interior of £. Note that £ = 50 if £ is a point.
Assume that £ is non-transversal, we distinguish three types for such &.

o A cell is of type (I) if dim¢ = dim&; = dimé&; = 1.
o A cell € is of type (II) if one of the cells &, or & is a vertex, and the other cell is an edge.

o A cell € is of type (III) if & and &; are vertices of the corresponding tropical curves.
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Pe (I) Type (II) Type (III)

Figure 2.2: The three types of non-transversal intersection cells.

2.2.6.2 Reduced systems

Recall that for an element a(t) € K*, we denote by coef(a(t)) the non-zero coefficient corresponding
to the term of a(t) with the smallest exponent of ¢.

Definition 2.20. Let f =3 A(y)nze Cw?” be a polynomial in K[z£, 25 with ¢, € K*, and
let & denote a cell of V;mp. The reduced polynomial f|c € Clzi, 25 of f with respect to € is
a polynomial defined as

fie = Z coef(cy )2,

wGAgﬁW

where W is the support of f.

We extend this definition to the following. Consider a system

fi(z) = fa(2) = 0, (2.2.4)

with f1, fo in K[zfl,zQﬂ] defined as above. Assume that the intersection set T} N Ty of the
tropical curves 77 and 75 is non-empty, and consider a mixed cell £ € T3 N'T5. As explained in
Subsection the mixed cell £ is written as & N &, for some unique & € Ty and & € Tb.

Definition 2.21. The reduced system of (4.1.1)) with respect to £ is the system

fiigs = faje, =0,
with fi¢, is the reduced polynomial of f; with respect to & fori=1,2.

In what follows, we assume that all solutions of (2.2.4) are non-degenerate. Let Wy and W,
denote the supports of f; and fo respectively, and write

filz) =) az’ and folz) = Y buz"

vEW, wEWs

The following result also generalizes to a polynomial system defined on the same field with n
equations in n variables.
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Proposition 2.22. If the system [2.2.4) has a non-degenerate solution («, 3) € (K*)? such that
Val(a, 8) € £, then (coef(a), coef(3)) is a real solution of the reduced system

fl|A§1 = f2‘A52 = 0 (22'5)

o

Proof. Assume that (2.2.4) has a non-degenerate solution (a, 3) € (K*)? such that Val(a, 8) € €.
Since Val(a, 8) belongs to the relative interior of each of &; and &, we have

max{(Val(a, 8),v) + val(a,), v € Wi \ (Wi NAg)} < (Val(e, B),v) +val(a,) for veWiNAg
and
max{(Val(a, 8), w)+val(by), w € Wo\(WaNAg,)} < (Val(a, 8), w)+val(b,) for w e WhanAg,.

Consequently, since ord = — val, we have M := —(Val(a, ), v)—val(a,) and N := —(Val(«, 5), w)—
val(b,,) are the orders of fi(a,B) and fo(c, ) respectively. Therefore, replacing (z1,22) by
(tord(o‘)zl, tordw)zg) in (2.2.4)), such a system becomes

£ (tord(a)zhtord(ﬂ)ZQ) — M (} :’UGWlﬂAg coef(av)z”+gl(z)),
1
(2.2.6)

o (tord(a)zhtord(ﬁ)@) — N (Zw€W20A£ Coef(bw)zw—l—gg(z)),

where all the coefficients of the polynomials ()1 and @2 of RK[zlﬂ, zQﬂ} have positive orders. Since
(r, B) is a non-zero solution of (2.2.5), the system has a non-zero solution (g, By) with
ord(a) = ord(By) = 0 and Coef(a, 5) = Coef (v, o). It follows that taking ¢ > 0 small enough,
we get that Coef(ayg, Bp) is a non-zero solution of

Z coef(a,)z’ = Z coef(by )z = 0.

vEWINAg, wEW2NAg,
O

Note that Proposition holds true for any type of tropical intersection cell £. However, the
other direction does not always hold true when ¢ is of type (I). Recall that a solution (a, 8) € (K*)?
is positive if (a, 8) € (RKZ)2.

Proposition 2.23. Assume that dim& = 0. If the reduced system of (2.2.4) with respect to
¢ has a non-degenerate solution (p1,p2) € (R%o)?, then (2.2.4) has a non-degenerate solution
(o, B) € (RKZ)? such that Val(a, B) = & and Coef(a, B) = (p1, p2)-

Proof. E. Brugallé showed in [BLdM12], Proposition 3.11] (see also [Kat09} Rab12 [OP13] for more
details for higher dimension and more exposition relating toric varieties and tropical intersection
theory) that the number of solutions of with valuation ¢ is equal to the mixed volume
MV (Ag,, Ag,) of & and & (recall that Ag = Ag, + Ag,). Since we assumed that has only
non-degenerate solutions in (K*)2, we get MV(Ag,, A¢,) distinet solutions of the system
in (K*)? with given valuation £. By Proposition if f1(z) = fa(z) = 0 and Val(z) = &,
then Coef(z) is a solution of the reduced system of with respect to £&. The number of
solutions of the reduced system in (C*)? is MV(A¢,, A¢,). Assuming that this reduced system has
MV (Ag,, Ag,) distinct solutions in (C*)?2, we obtain that the map 2z + Coef(z) induces a bijection



2.2. A brief introduction to tropical geometry 36

from the set of solutions of in (K*)2? with valuation & onto the set of solutions in (C*)? of
the reduced system of with respect to &.

If z is a solution of in (K*)? with Val(z) = ¢ and Coef(z) € (R*)?, then 2z € (RK")?
since otherwise, z, Z would be two distinct solutions of in (K* \ RK")? such that Val(z) =
Val(z) = £ and Coef(z) = Coef(Z). O



Chapter 3

Intersecting a sparse plane curve
and a line

We prove in Section [3.2] the following result.

Theorem 3.1. Let f € Rz, y] be a polynomial with at most t non-zero terms and let a,b be any
real numbers. Assume that the polynomial g(x) = f(x,ax + b) is not identically zero. Then g has
at most 6t — 7 real roots counted with multiplicities except for the possible roots 0 and —a/b that
are counted at most once.

In Section we construct the equation (3.3.4) proving the following.
Theorem 3.2. The mazximal number of real intersection points of a real line with a real plane
curve defined by a polynomial with three non-zero terms is eleven.
3.1 Preliminary results

We present some results of M. Avendano [Ave09] and add other ones. Consider a non-zero univari-
ate polynomial f(x) = Z?:o a;x" with real coefficients. Denote by V(f) the number of change signs
in the ordered sequence (ayg, . .., aq) disregarding the zero terms. Recall that the famous Descartes’
rule of signs asserts that the number of (strictly) positive roots of f counted with multiplicities
does not exceed V(f).

Lemma 3.3. [Ave0d] We have V((z + 1)f) < V(f).

The following result is straighforward.
Lemma 3.4. [Ave09] If f,g € Rlz] and g has t terms, then V(f + g) < V(f) + 2t.
Denote by N (h) the Newton polytope of a polynomial i and by A(h) the interior of N'(h).

Lemma 3.5. If f,g € R[X], g hast terms and V(f + g) = V(f) + 2t, then N (g) is contained in
N().
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Proof. Assume that A(g) is not contained in N(f). Writing f(z) = Y., a;z* and g(z) =
t
bjmﬂf with0<a; < - <asgand 0 < fy < -+ < B, we get B1 < ag or as < B;. Assume that
=1

J_
B1 < a; (the case as < B¢ is symmetric). Then, obviously

V(f(z)+9(x)) <1+ V(f(2) +g(x) — biz™).
By Lemma [3.4] we have
V(f(x) + g(x) = biz™) <V (f) +2(t = 1).

All together this gives V(f +¢g) <1+ V(f)+2(t—1)=V(f) +2t — 1. O

Proposition 3.6. [Ave09] If f € Rz, y| has t non-zero terms, then

V(f(z,z+1)) <2t—2.
Proof. Write f(z,y) = > ,_; ar(x)y®*, with 0 < a3 < -++ < a,, and ag(z) € R[z]. Denote by
the number of non-zero terms of ay(z). Define

n

fe(z,y) = Zaj(x)yaj_ak L k=1,....n,

Jj=k

and fp41 =0. Then fr(z,z2+1) = (z+ )1 fry(z,2+ 1) +ap(x) for k=1,...,n —1 and
fo(z,x + 1) = anp(x). Therefore, V(fi(z,z + 1)) < V(fit1(z,z + 1)) + 2t; by Lemma and
Lemma (3.4l Finally, V(f(z,z+1)) < V(fi(z,z+1)) since f(z,x+1) = (x+ 1) fi(z,z+1). We
conclude that V(f(z,2+1))) < =24 2(t; + -+ t,) = 2t — 2.

O

Proposition 3.7. Let f € Rlz,y] be a polynomial with t non-zero terms. Write it as f(x,y) =
S by with 0 <y <y < - <y IFV(f(a,z + 1)) = 2t — 2, then

N(bixﬁi(x+ 1)) CN(btth(er 1))
(in other words, By < Bi < Bi +7i < Be+ ) fori=1,...,t— 1.

Proof. We use the proof of Proposition keeping its notations. Write f(z,y) = Y ,_, ax(z)y™*
with 0 < a3 < -+ < a;, and assume that V(f(z,z + 1)) = 2t — 2. It follows from the proof of
Proposition [3.6] that

V(fe(r,z 4+ 1)) =V (feq1(z,x + 1)) +2t,, k=1,...,n. (3.1.1)

Recall that fy(xz,x+1) = (. +1)*+17% fi (2,2 + 1) + ag(z) for K <n—1. By Lemma|3.5| and
(3.1.1) we get N(ar(z)) C N((x 4+ 1)*+17% f 1 (x,x + 1)) and thus

Nax(@) (@ +1)°%) € N((x + 1) fipa (@, + 1) (3.1.2)



39 CHAPTER 3. A SHARP BOUND FOR A PLANE CURVE AND A LINE

for k=1,...,n — 1. We now show by induction on n — k > 1 that

o

N((@+ 1) fp (2,2 + 1) C N(an(@)(z + 1)), (3.1.3)

Together with this will imply N (ag(z)(x + 1)) C /:/'(an(x)(sc + 1)) fork=1,...,n—1,
and thus N (b;x% (x + 1)) C K/'(btxﬁt (x+1)") fori=1,...,t —1. For n —k = 1 the inclusion
is obvious. Since fy(z,z4+1) = (z+1)¥+17%% f (2, x+1)+ap(x) and N (ap(z)) C ./{)f((x+
L)ek+r=ak fr 1 (z,z + 1)), we get Ji/'(fk(x,x +1)) = X/((:E + 1)@= % fi g (z, 2 4+ 1)). Assuming
is true for k (hypothesis induction), this immediately gives ./c/'((:v + 1) fi(z,x + 1)) C
K/(an(ac)(ac + 1)) and thus is proved for k — 1. O

3.2 Proof of Theorem 3.1

We first recall the proof of the bound 6t — 4 in [Ave(09]. Let f(z,y) = 25:1 bizPiyr € Rz, y]
be a polynomial with at most ¢ non-zero terms, and let a, b € R. Set g(z) = f(z,ax +b). If
a =0or b =0, then f has at most ¢ non-zero terms and Descartes’ rule of signs implies that
either ¢ = 0 or g has at most 2t — 1 < 6t — 4 real roots (counted with multiplicities except for
the possible root 0). If ab # 0, then the real roots of f(xz,ax + b) correspond bijectively to the
real roots of f(bxz/a,b(z + 1)) = f(z,z + 1), where f(z,y) = 22:1 bia=PibPityighiyi . Since this
bijection preserves multiplicities and maps the possible roots 0 and —b/a of g to the roots 0 and
—1 of f(z,x + 1), it suffices to consider the case a = b = 1, i.e. g(z) = f(z,z +1). So we now
consider g(z) = f(x,z + 1). Assume that g # 0 and denote by d the degree of g.

Descartes’ rule of signs and Proposition [3.6] imply that the number of positive roots of g
counted with multiplicities is at most 2t — 2. The roots of g in | — co, —1[ correspond bijectively
to the positive roots of g(—1 —z) = f(-1 —z,—x) = 22:1 bi(—1)%+YigYi (x + 1)#. Therefore,
by Proposition the number of roots (counted with multiplicities) of g in | — oo, —1] cannot
exceed 2t — 2. Finally, the roots of ¢ in | — 1,0] correspond bijectively to the positive roots of
(z+1)g(=%) = (e+1)If (%, 225) = S, bi(—1)%a% (z + 1)4=% =% Thus, by Proposition
there are at most 2t — 2 such roots.

All together, this leads to the conclusion that g has at most 3(2¢t — 2) 4+ 2 = 6¢ — 4 real roots
counted with multiplicities except for the possible roots 0 and —1 that are counted at most once.

We now start the proof of Theorem
Set I; =]0,4+00[, I2 =] — 00, —1[ and I3 =] — 1,0[. For h € R[z] define

Vi,(h) =V (h), Vi(h)=V(h(-1—=)) and
= (i ()

By Descartes’ rule of sign the number of roots of h in I; does not exceed Vy,(h). To prove
Theorem it suffices to show that

Vi (9) + Vi, (9) + Vi, (9) < 3(2t —2) =3 (3.2.1)

Define polynomials
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so that Vi, (h1) = Vi, (h), Vi, (he) = Vi, (k) and V7, (hs) = Vi, (h).
Lemma 3.8. For any i,j,k such that {i,7,k} = {1,2,3}, we have
Vi,(hi) = Vi, (h) and Vi, (h;) = Vi, (h)

Proof. We have hy(—z — 1) = (=1)4(z + 1)%h (f—) Therefore

V(hl(—z—l)):v< *1+1 ( 1+1>>,thus
it =7 () () = v (ot ().

Jr
and we get Vi, (h1) = Vi, (h). We have (z + 1)%h; <
obtain V[3 (hl) = V]2 (h)

Equalities Vi, (he) = Vi, (h) and Vi, (he) = Vi, (k) follow from
ha(—1 —x) = (—2)?h(~1 —271) and (z + 1)%hy(— 1) = h(x).

Finally, V1, (h3) = Vi, (h) comes from h3(—x —1) = h(z) and V, (hs) = V7, (h) is a consequence
of (z + 1)%hz(— ) = (@ + )dh(—m) and the equality V((z + 1)?h(— z+1>) = Vi, (h) shown
above. O

) = (—z)?h(—1 — 2~ 1) from which we

We now proceed to the proof of . We already know that Vi, (g) < 2t—2fori=1,2,3. If
V1,(g) < 2t — 3 for all 4, then is trivially true. With the help of Lemma it suffices now
to show that if Vz, (g) = 2t —2 then Vi, (g) < 2t—3, Vi,(g) < 2t—3, and V1, (g9)+ Vi, (9) < 2(2¢t—3).
So assume V7, (g) = 2t — 2. Then by Proposition

We have g(—1—z) = 2;1 bi(—1)Pt7igi (4 1)% . Recall that Vi, (g) = V(g(—z—1)) < 2t—2 by
Proposition From , we get ¢ > ; for i =1,...,t — 1. It follows then from Proposition
that V(g(—z — 1)) <2t — 3.

Write g(—1—2) = g(—2 — 1) +by(—1)Pe+7 27 (2 +1)% and then g(—1—z)(x+1)"P = §(—z —
1) (24 1) 78 +b,(—1)5+7 27t We note that implies B; < B; fori =1,...,t—1, so that both
members of the previous equality are polynomials. Moreover, from we also get B; — B +v; <
7t, and thus 7; does not belong to the Newton polytope of the polynomial §(—2 — 1)(x + 1)="
It follows that V(g(—1 — x)(z + 1)7#) < V(§(—x — 1)(z + 1)%) + 1. By Lemma we have
V(g(=1—12)) < V(g(—x —1)(z +1)~P). Therefore, V(g(—1—2)) < V(§(—z — 1)(z +1)7P¢) + 1.
On the other hand Proposition [3.6| yields V (§(—z — 1)(z +1)7%) <2(t — 1) — 2 =2t — 4.

Therefore, if V(g(—1 —x)) = 2t — 3, then V(§(—x — 1)(z +1)7#*) = 2t — 4, and we may apply
Proposition [3.7to §(—z — 1)(z 4+ 1) in order to get

Yio < Vi <Y+ Bi < Vig + Bip foralli=1,...,t—1and i # i, (3.2.3)
where i is determined by 3,, > §; fori =1,...,t — 1.
Starting with g;(z) = 2%(1/z) = Si_, biz® P~ (z 4+ 1)% instead of g in the previous
computation, we obtain that if V(¢1) = 2t — 2 then Vi,(¢g1) < 2t — 3 and if V,(g1) = 2¢ — 3, then
the substitution of d — f3; — ~; for 5; in (3.2.3) holds true:

Vi, <7 <d—B;<d—pB foralli=1,...,t —1and i # i1, (3.2.4)
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where 47 is determined by d — 8;, — v, >d—f; —y; fori=1,...,t — 1.

On the other hand, V(g) = V(g1) and V(g1(—z — 1)) = V1, (g91) = V1,(g) by Lemma[3.8] Thus
if V(g9) = 2t — 2 then Vi, (g) < 2t — 3 and if Vi,(g) = 2¢t — 3, then formula holds true.
It turns out that (3.2.3) and (3.2.4) are incompatible. Indeed, if (3.2.3) and (3.2.4) hold true
simultaneously, then g = ¢; but then implies that v, + 8i, < vi+B; forall1,...,t—1 with
i # io which contradicts (3.2.3). Consequently, if V(g) = Vi,(g) = 2t — 2, then Vp,(g) < 2t — 3,
Vi,(9) <2t —3 and Vi, (g9) + Vi, (g) < 2(2t — 3).

3.3 Optimality

We prove that the bound in Theoremis sharp fort = 3 (Theorem. We look for a polynomial
P € Rz, y] with three non-zero terms such that P(z,z + 1) has nine real roots distinct from 0 and
—1. Tt follows from the previous section that if such P exists then, either P(z,z + 1) has three
roots in each interval I, I and I3, or P(z,z + 1) has four roots in one interval, three roots in
another interval, and two roots in the last one. We give necessary conditions for the second case,
which thanks to Lemma reduces to the case where P(z,z + 1) has four roots in I; =|0, 40|,
three roots in I3 =] — 1,0[ and two roots in I =] — oo, —1[.

Multiplication of P by a monomial does not alter the roots of P(z,z + 1) in R\ {0, —1}, so
dividing by the smallest power of x, we may assume that P has the following form

P(z,y) = ay' + ba*?y' + 2oy,
where ks, ks, l1, l2, I3 are nonnegative integer numbers and a, b are real numbers.

Lemma 3.9. If P(z,x + 1) has four real positive roots, then ko > 0, kg > 0, I > lo + ko and
l1 > 13+ ks.

Proof. If P(x,z+1) has four real positive roots, then V(P(z,z+1)) = 4. Rewriting P(z,x+1) =
Z?Zl bixPi(x 4 1) with 0 < v < 79 < 73, Proposition yields B3 < 8; < Bi +7vi < B3+ 73
for ¢ = 1,2. Since ko and k3 are nonnegative, we get 83 = 0, ko, k3 > 0 and 3 + v3 = v3 = [, so
l1 > max(lg + kQ, 13 + k?g) O

Since I; > Iy and I; > I3, we may divide P(x,z+1) by (z+1)" or (z41)" to get a polynomial
equation with the same solutions in R\ {0, —1}. So without loss of generality we may assume that

P(z,z+ 1) = a(z + 1) + ba*2 (x + 1) + 2F3, (3.3.1)
where ko, k3 > 0, 1o >0, 11 > ko + 15 and [y > k3.

Lemma 3.10. Assume that the polynomial (3.3.1)) has four roots in Iy, and three roots in I3 or
Iy. Then ks does not belong to the interval [ka, ko + lo]. Moreover, we have a < 0 and b > 0.

Proof. We prove that if ko < k3 < kg + lo, then (3.3.1)) has at most two roots in I3 and in I3.
The roots in I are in bijection with the positive roots of

P(—z —1,—z) = (=1)"az" + (=1 2bzl2 (x4 1)%2 4 (=1)" (1 + ).

Recall that Iy > 0. If ky < ks < ko + I then Proposition [3.7] yields V((—1)k*2pzt2 (z + 1)k +
(=) (1 +z)*s) < 1. Now, since l; > ko + 1o and 1 > k3, we get V(P(—z — 1, —x)) < 2, and thus
(3.3.1) has at most two roots in I5.
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The roots in I3 are in bijection with the positive roots of

—r -z
r+1 z+1

(1+2)" P +1) =a+b(=Drat (14 o)t TR 4 (—1)fake (14 2)h e
From k3 < ko + lo, we get Iy — ko — lo < I3 — k3. Thus, Proposition [3.7) together with ke <
ks yields V(b(—1)F2zF2 (1 + z)lr—k2=le 4 (—1)Fagha(1 4 2)r7Fs) < 1. From kg, k3 > 0 we get
V((1+2)" P(75, =55 +1)) <2, and thus (3.3.1) has at most two roots in I3.

Finally, if (3.3.1) has four positive roots, then obviously ab < 0. If k3 does not belong to
[k2, ko + lo] and a > 0, then V((z + 1)1 + bzk2(z + 1)22 + 2%) = V((z + 1) + bak2(z + 1))
(recall that ko < ko + 13 < l1). But the second sign variation is a most two by Proposition We
conclude that a < 0 and b > 0. O

Lemma 3.11. Assume that the polynomial (3.3.1)) has four roots in Iy, two roots in Is and three
roots in Is. Assume furthermore that ks < ko. Then, 1y is odd, ko is odd, k3 is even and Iy is
even.

Proof. Since (3.3.1]) has exactly nine real roots counted with multiplicity, its degree Iy is odd. We

have already seen that if (3.3.1) has four roots in Iy =|0,4+o00[, two roots in Iy =] — oo, —1[ and
three roots in I3 =] — 1,0[, then a < 0, b > 0, I; > Iy and k3 ¢ [ko, k2 + l2]. Assume from now on
that ks < ko.

Since has two roots in Iy =] — oo, —1[, we have V(P(—x — 1, —x)) > 2, where P(—z —
1,—z) = (=1)*s(1 + 2)% + (=1)F2Flepal2 (x + 1)k2 + (—1)rax!r. But since ks < ky < ko + 1 < Iy,
we get that (—1)%s . (=1)k2+l2p < 0 and (—1)*2*2p. (—1)"1a < 0. Using a < 0 and b > 0, we obtain
that ko + I is odd and k3 is even.

Since (3.3.1) has three roots in I3 =] — 1,0[, we have V((1 + x)llP(I_—fl, a1t D) >3,
where (1 + x)llP(I_—fl, Tt =a+ b(—1)k2gkz(1 4 z)li=ke=la 4 (—1)kaghs (1 4 ) —ks=ls We

know that ks is even and that b > 0. Thus in order to get coefficients with different signs in
b(—1)kzpkz (14 g)h—ke=lz 4 (—1)kegks(1 4 g)i—ks=ls the integer ko should be odd. Since we know
that ko + 5 is odd, this gives that [ is even. O

Assume now that has four roots in I, two roots in I and three roots in I3. Then a < 0,

b > 0 and k3 does not belong to [ke, ko + l2] by Lemma Assume that k3 < k. Then [; is

odd, ks is odd, k3 is even and [y is even by Lemma The roots of are solutions to the

equation f(x) = —a, where f(x) = bz"2(1 4+ z)2~" 4+ 2" (1 + 2)~"*. Since the rational function f

has no pole outside {—1,0}, by Rolle’s Theorem its derivative has at least three roots in I7, one

root in I and two roots in I3. We compute that f/(z) = 0 is equivalent to ®(x) = 1, where ® is
the rational map

Ba) = 2RO D) A (@)

A2 (33)

with A1($) = (k2—|-lg —ll)m-i-kg and A2($) = (kg —l1)$—|—/€3. From 0 < k3 < ko, I3 > 0 and l; > 0,
we obtain that the roots of A; and A, satisfy 0 < ll]j—skg < ll—:ﬁ Moreover, the roots of ® are
—1 with even multiplicity I3, 0 with odd multiplicity ks — k3 and the positive root of A; (which is
a simple root of ®). The poles of ® are the positive root of As and the point at infinity which has
multiplicity deg(®) — 1 if we homogeinize ® into a rational map from the Riemann sphere CP! to
itself.

(3.3.2)
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Figure 3.1: A real dessin d’enfant for ¢.

We find exact values of coefficients and exponents of (3.3.2) in the following way. Note that
the exponents of (3.3.2)) are independent of I;. We first choose small values ko = 5, k3 = 2, lo = 2
satisfying the above parity conditions. Then, we look for a function

Cl’g X 2 Tr — pP1
p(z) = ( H_) lw=p ), (3.3.3)
L= p2

such that ¢ is some real constant, 0 < p2 < p; and @(x) = 1 has three solutions in I, one solution
in I and two solutions in I3.

The existence of such a function ¢ is certified by Figure [3.1] thanks to Proposition Figure
shows HT contained in one connected component of CP! \ RP!. From Figure we see that
0 < p2 < p1 and that ¢ has the desired number of inverse images (letters r) of 1 in each interval
I;.

Now we want to identify (3.3.3)) and (3.3.2]). Recall that ks = 5, k3 = 2, lo = 2 are fixed. We
«®(241)% (z—p1)
some level set of this function has three solutions in I, one solution in I, and two solutions in

look at the function , where p; = ll_,’iﬁ and py = hli—%%, and increase [ so that
I3. It turns out that [; = 17 is large enough and the level set gives the value 29 for b. Finally,
integrating ® and choosing a = —0, 002404, we get

—0.002404(x + )7 + 2925 (x + 1) + 22 (3.3.4)

for (3.3.1). This polynomial has four roots in Iy, two roots in Iy and three roots in I3. This has
been computed using SAGE version 6.6 which gives the following approximated roots: 0.18859,
0.22206, 0.25196, 0.44416 in I;, —3.96032, —1.15048 in I, and —0.61459, —0.58528,—0.03594 in
I3.

Multiplying this polynomial by z(x + 1) gives a polynomial of the form P(z,z + 1) (where
P € R[z,y] has three non-zero terms) having eleven real roots.






Chapter 4

Positive intersection points of a
trinomial and a t-nomial curves

4.1 Introduction and statement of the main results

Consider a system

f=9=0, (4.1.1)

where f has t > 3 non-zero terms and g has three non-zero terms. We assume in this chapter
that (4.1.1) has a finite number of solutions, and denote by S(3,t) the maximal number of non-
degenerate positive solutions such a system can have. We prove the following result in Section [4.2]

Theorem 4.1. We have S(3,t) < 3-2t72 — 1.

Consider now a function
(1 — z)? P(x)
)= —

where «, f € Q, and both P and @ are real polynomials. Using real dessins d’enfant, we prove in
Section [4.3] the following result.

Theorem 4.2. We have §{x €]0,1] |¢(x) =1} < degP + deg@ + 2.

We say that two triangles A; and A, in R? alternate when any two consecutive edges of
their Minkowski sum Aj; 4+ As are not translate of two consecutive edges of A; or of As (see
Definition [4.30). We prove in Section [4.4] the following result.

Theorem 4.3. If a system of two trinomials in two variables has 5 positive solutions, then the
Newton triangles of the respective equations do not alternate.

4.2 Proof of Theorem 4.1

Define the polynomials f and g of (4.1.1)) as
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flu Za u® v and  g(u,v) Zb 0 (4.2.1)

=1

where all a; and b; are real.

We suppose that the system has positive solutions, thus the coefficients of g have
different signs. Therefore without loss of generality, let by = —1, by > 0 and b3 > 0. Since
we are looking for positive solutions of with non-zero coordinates, one can assume that
y1 = 61 = 0. Furthermore, the monomial change of coordinates (u,v) — (x,y) of (C*)? defined
by bou?v% = z and bsuv% = y preserves the number of positive solutions. Therefore, we are
reduced to a system

Zciaﬁk"yli =—-1+4+z+y=0, (4.2.2)
i=1
where ¢; is real for i = 1,--- ¢, and all k; and [; are rational numbers.

We now look for the positive solutions of (4.2.2). It is clear that since both x and y are positive,
then z €]0,1[. Substituting 1 — z for y in (4.2.2)), we get

t

F(z):=> aab(1-a), (4.2.3)

i=1
so that the number of positive solutions of (4.1.1) is equal to that of roots of F' in ]0,1[. For any
d € N, denote by Ry[z] the set of real polynomials of degree at most d.

Lemma 4.4. Consider a function defined by h(x Zb 2™ (1—x)" h; g(x), where hy g, ..., hsa €

Ry[z]. Then for all v € N, there exist h1,dqr,- - - hsﬁdﬂ, € Ryyr[x] such that the r-th derivative of
h is defined by

h(r) me,—r _ nl_rhi,d—&-r (l‘)

Proof. One computes that
(z™(1 —z)"h(z)) = 2™ Y1 —2)" - [((n — m)z +m) h(z) + (1 — z) (2)] .

O
Define fi,. .., f; inductively by fi(z) = 27%1(1 —2)"" F(x) and
fioa() = abs Rt 2 (g2 BT ) o,
Lemma 4.5. For j = 1,...,t, there exist polynomials hja;,...,hta; € Ry,[z] such that d; =
27— 1,
t
fi(@) = hja,(z) + Z bR (1 —2)i b, for j=1,...,t—1 (4.2.4)

i=j+1

and fy = hyq,(x).
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Proof. This follows easily from Lemma [£.4] O

Let N; denote the set #{z €]0,1[ | f;j(z) = 0} for j = 1,...,t. Note that N; = #{z €
10,1 | F(«) = 0}. Rolle’s Theorem implies directly that

Nj < Njy1 +2771 for j=1,...,t—1 (4.2.5)
Moreover, N; < d; =271 — 1 by Lemma Consequently, we get
t—

#H{z €]0,1[| F(z) =0} =N, <Y 2714 N, =272 14 N, (4.2.6)
j=1

no

j
By (4.2.5), we have N; 1 < Ny +2172 < 2171 — 1 4 272 (since NV; < 2!7! — 1), which together

with (4.2.6]) gives
t{z €)0,1[ | F(z) =0} <2'—2.

This is the bound obtained in [LRW03]. The sharper bound that we give is obtained by improving
the bound on N;_;. This improvement uses the fact that f;_; is a rational function, thus one can
use a different approach to get a sharp bound on N;_;. We have already seen that

fer(e) = ~Q(w) + R (1 - ) (),
where P,Q € Ry, ,[z] with d;_; = 2!72 — 1. We have
rkt—ki—1 (1 _ x)lt*lt—lp(x)
- =0 <<= =1.
fimrta) Q@)
Therefore applying Theorem [4.2] we get N;_; < 27! — 2 4+ 2 = 2!=1, Finally, by (4.2.5), we get
#{z €]0,1[ | f(z) =0} <2071 42072 —1=3.20"2 1,

which finishes the proof of Theorem assuming Theorem

4.3 Proof of Theorem 4.2

Consider the function
2%(1 — )P P(x)

o(x) 0w :
where o, 8 € Q and P,Q € R[z]. Let m be a positive integer such that ma and mpj are integers.
Then ¢ := ¢™ is a rational function from C to C. Here and in the rest of this chapter, we see the
source and target spaces of ¢ as the affine charts of CP! given by the non-vanishing of the first
coordinate of homogeneous coordinates and denote with the same symbol ¢ the rational function
from CP! to CP! obtained by homogenization with respect to these coordinates. In what follows,
we apply the theory of Groethendieck’s dessin d’enfant to the rational function .

Denote by I' := ¢~ !(RP!). Since the graph is invariant under complex conjugation, it is
determined by its intersection with one connected component H (for half) of CP* \ RP!. In most
figures we will only show one half part H NT together with RP' = OH represented as a horizontal
line. Moreover, for simplicity, we omit the arrows. The reader may refer to Chapter [2| for more
details on real dessins d’enfant.

Definition 4.6. Any root or pole of ¢ is called a special point (of ¢), and any other point of T
is called non-special.
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4.3.1 Reduction to a simpler case

We first need a definition.

Definition 4.7. Let a, b be two critical points of ¢ i.e. vertices of I'. We say that a and b are
neighbours if there is a branch of T'\ RP! joining them such that this branch does not contain
any special or critical points of ¢ other than a or b.

In this section, we show how to reduce to the case where ¢ satisfies the following properties

(i) All roots of P and @ are special points of ¢ with the same
multiplicity m.

(ii) Each non-special critical point of ¢ has multiplicity two and is not

4.3.1
a solution of ¢ = 1. (4.3.1)

(iii)  All real non-special critical points of ¢ are neighbours to real critical
points of ¢.

We will introduce an algorithm that transforms any dessin d’enfant I" of ¢ to a dessin d’enfant
IV of a function satisfying the three properties mentioned above. Moreover, this transformation
does not reduce the number of real letters r of ¢. Therefore, to prove Theorem it suffices to
consider a function ¢ satisfying .

This algorithm is a series of transformations which are devided into two types. The first type,
called type a), reduces the valencies of all critical points so they verify the conditions (i) and (ii).
The second type, called type b), transforms a couple of conjugate points p (resp. ¢, r, non-special
critical points) into a point p (resp. ¢, r, non-special critical point) which belongs to RP!.

4.3.1.1 Transformation of type a)

Consider a critical point « of ¢, which does not belong to {0, 1, cc0}.

e Assume that o € RPL. Let U, be a small neighborhood of « in CP! such that U, \ {a} does
not contain letters r, critical points or special points.

Assume that « is a special point (a root or a pole of ¢). Then the valency of « is equal to
2km for some natural number k. We transform the graph I' inside U, as in Figure [f.1} In the
new graph IV, the neighborhood U,, contains two real special points and a real non-special critical
point of ¢ (and no other letters p, ¢, r and vertices). If « is a root (resp. pole) of ¢ then both
special points are roots (resp. poles) of ¢ with multiplicities m and (k — 1)m. Moreover, the new
non-special critical point has multiplicity 2. It is obvious that the resulting graph I is still a real
dessin d’enfant.

Assume that « is a non-special critical point that is a letter r (a root of ¢ —1). Then the valency
of a is equal to 2k for some natural number k£ > 2. We transform the graph I' as in Figure
In the new graph I, the neighborhood U, contains two letters r of multiplicity 2(k — 1) and 1
respectively, and one non-special critical point of multiplicity 2, which is not a letter » (and no
other letters p, g, r or vertices).

Assume that « is a non-special critical point that is not a letter r. Then the valency of «
is equal to 2k for some natural number k > 3. We transform the graph I' such that in the new
graph I, the neighborhood U, contains two non-special critical points, which are not letters r,
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with multiplicities 2 and (k — 1) (and no other letters p, ¢, r or vertices).

e Assume now that o ¢ RP!. Consider a small neighborhood U, of o and the corresponding
neighborhood of its conjugate & (the image of U, by the complex conjugation). Assume that both
neighborhoods are disjoint and both U, \ {a} and Uz \ {a} do not contain letters r, critical points
or special points. Recall that the valency of « is even. Choose two branches of I'N{4, starting from
a such that the complement of these two branches in U, has two connected components containing
the same number of branches of I' NU,. We transform I' N U, similarly as in the case a € RP!
and do the corresponding transformation of the image of I' N U, by the complex conjugation.

Assume that « is a special point (a root or a pole of ). We transform the graph I' inside U,
as in Figure In U, the resulting graph I’ contains two special points of ¢ with multiplicities
m and (k — 1)m respectively, and one non-special critical point with multiplicity 2 (and no other
letters p, g, r or vertices), all of which belong to the previously chosen two branches.

Assume that « is a non-special critical point that is a letter r (a root of ¢ — 1). Then the
valency of « is equal to 2k for some natural number k > 2. In the new graph IV, the neighborhood
U, contains two letters r of multiplicity 2(k — 1) and 1 respectively, and one non-special critical
point of multiplicity 2, which is not a letter r (and no other letters p, g, r or vertices), all of which
belong to the previously chosen branches.

Assume that « is a non-special critical point that is not a letter . Then the valency of « is
equal to 2k for some natural number £ > 3. We transform the graph I" such that in the new graph
IV, the neighborhood U, contains two non-special critical points, which are not letters r and which
belong to the previously chosen two branches, with multiplicities 2 and (k — 1) respectively (and
no other letters p, g, r or vertices).

km —1 (k—=1)ym —1

{y=0} =0} \A/\

Figure 4.1: A transformation of type a) where « is a real root of P, k = 3 and m = 4.
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P ANT

e

Figure 4.2: A transformation of type a) where « is a real root of ¢ — 1 with multiplicity 5.

RP'! RP!

Figure 4.3: A transformation of type a) where « is a complex root of @, k = 3 and m = 2.
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2m—1

Figure 4.4: A transformation of type b) where « is a letter p, and m =4 .

We make this type of transformation to every point o mentioned before. Repeating this process
several times gives eventually the conditions (i) and (ii).

4.3.1.2 Transformation of type b)

Consider a point a € I'\RP!, which is either a letter p, ¢, 7 or a non-special critical point, together
with its conjugate a. Note that we do not assume that « is a vertex of I'. Assume that o and &
are both joined by a branch of ' to a real non-special critical point ¢ of multiplicity 2. Assume
furthermore that both branches do not contain letters p, g, r or non-special critical points (if « is
a vertex of T', this means that « and ¢ are neighbours), and that ¢ is not a root of ¢ — 1. Define
e (resp. €) to be the complex edges joining « (resp. &) to c¢. Consider a small neighborhood U,
of ¢ such that U, contains both a and &. Moreover, assume that U/, does not contain letters r,
special points or critical points different from «, & and ¢. We transform T" into a graph I' as in
the Figure In U, the new graph I contains only one vertex 3, which is a letter p (resp. ¢, r,
non-special critical point) if so is a (and no other letters p, ¢, r or vertices). Moreover, the valency
of (8 is equal to two times that of a.

4.3.1.3 The algorithm

The algorithm goes as follows. We achieve conditions (i) and (ii) first by making transformations
of type a). If there is no o € I' \ RP! as in Section then the condition (iii) is also satified,
and we are done. Otherwise, we perform the transformation of type b), this creates one critical
point which violates at least one of conditions (i) or (ii). Then, we perform a transformation of
type a) around this real critical point. Repeating this process sufficiently many times gives us
eventually conditions (i), (ii) and (iii).

4.3.2 Analysis of dessins d’enfant

In what follows of this section, we assume that ¢ satisfies conditions (i), (ii) and (iii).

Definitions and Notations 4.8. Define I :=|0,1[, and denote by the same letter py (resp. qo)
any root (resp. pole) of ¢|1,. Define b as the number of connected components of the graph of ¢|z,,
and by as the number of connected components of the graph of ¢|;, situated above the x-azis.
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Remark 4.9. Note that the functions ¢ and p = ¢™ have the same b but not necessarily same b .

Let Sp be the total number of roots and poles of ¢p,.

Lemma 4.10. We have [%J < by < [%J + 1.

Proof. The roots and poles in I of ¢ are simple, so the sign of ¢ changes when passing through
one of them. O

Remark 4.11. If Sy is even and by = @ + 1, then the closest branch to 0 (resp. to 1) of the

graph of ¢ in Iy is above the x-axis.
Note that
2 N1 —2)P 1 H(x)
Q*(x)

() =
where H(x) is
aP(2)Q(z) + (P'(2)Q(z) — P()Q'(z) — (a + B)P(2)Q(z))z + (P(2)Q'(z) — P'()Q(x))z?,

and thus deg H < deg P + deg@ + 1. Therefore, since we assumed that all non-special critical
points of ¢ are of multiplicity two, the polynomial H has at most deg P + deg ) + 1 simple roots.
One easily computes that ¢ and ¢ = ¢™ have the same set E of non-special critical points (recall
that |E| < deg P + deg @ + 1). Moreover, ¢ (z) = 0 & (¢™)*)(z) = 0. Hence a critical point
of ¢ with non-zero critical value is a critical point of ¢ with also non-zero critical value and same
multiplicity, and vice versa. Note that if = is a root (simple by assumption) of P (resp. @), then
x is a special point of ¢™ of multiplicity m, thus corresponds to a vertex of I' = (¢™)~}(RP?!) of
valency 2m.
Set B = (¢=1(0,1, 00) U { non-special critical points }) N R.

Definition 4.12. A real non-special critical point n is called useful if among the two closest
points in B, there is a letter r (See Figure .

Figure 4.5: The point n is a useful non-special critical point.

Definition 4.13. Consider two real non-special critical points x1 and xo in Iy which are neighbours
and such that Jx1, 23] does not contain non-special critical points. Furthermore, consider the disc
D in CP! containing |z1, z2| with boundary given by the union of the complex arc of ' joining xy
to xo and its conjugate. Then the flattening of T with respect to |x1,xo| is the dessin d’enfant
obtained by collapsing the complex conjugate branches joining x1 and x4 to |x1, x| and forgetting
all the connected components of U contained in D. If there is a letter r in the boundary of D\ RP!,
then this letter and its conjugate are transformed into a single letter r €]xy, xs] (see Figure @/
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Recall that all non-special critical points of ¢ have multiplicity two. In particular, if it is real,
such a point has only one neighbor.

flattening

Figure 4.7: In this example, m = 1 and [z, x2] contains three useful non-special critical
points, four roots and four poles of ¢.
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Proposition 4.14. Let x1, x4 € Iy =|0, 1] be two non-special critical points which are neighbours.
Assume that all non-special critical points in |x1, x| are neighbours only to each other. Then the
number of roots of ¢ is equal to that of the poles of ¢ in |z, xa[, and this number is bigger than
or equal to the number of useful critical points in [x1,x2] (See Figure .

Proof. Suppose first that |21, x2[ does not contain non-special critical points. Then the number of
roots (letters p) and poles (letters q) in ]z1, 22| are equal by the cycle rule (See Figure |4.8]).

Ty p r q T p r q T2

N

Figure 4.8: The function ¢ has the same number of roots and poles in |z, zo].

Moreover, 1 and x2 cannot both be useful non-special critical points, again since otherwise
this contradicts the cycle rule.

Figure 4.9: Having both non-special critical points useful contradicts the cycle rule.

Assume now that 1, 22| contains non-special critical points. Consider two non-special critical
points y1, Y2 € [x1,z2] which are neighbours and such that ]y;, y2[ does not contain non-special
critical points. We have already seen that y; and yo cannot both be useful, and that ]y, yo[ contains
the same non-zero number of letters p and g. Thus it suffices to prove the result for the dessin
d’enfant obtained by flattening I" with respect to |yi,y2[. Note that the number of non-special
critical points in ]z1, 29[ strictly decreases after such flattening. Therefore, we are reduced to the
case where |z1, zo[ does not contain non-special critical points.

O

Recall that all letters p and ¢, which are different from 0, 1 or co, have the same valency 2m.

Lemma 4.15. Let x1, xo € Iy be critical points which are neighbours and such that |x1, xo| does
not contain non-special critical points. If one endpoint of [x1,xs] is a non-special critical point,
then both x1, xo are mon-special critical points.
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P q r p q r P q

Figure 4.10: No part of I' can have this configuration given both critical points are in Ij.

Proof. We argue by contradiction. Assume that |z1, z2[=]p, c[ where ¢ is a non-special critical
point and p is a root of P (the case where instead of p we have a root of @ is symmetric). Consider
the open disk D which contains |p, ¢[ and which is bounded by the complex branch of T' joining
P to ¢ together with the conjugate branch. Consider the set of special points in D U {p} together
with the branches of I' N (D U p) joining letters p to letters ¢ and not containing any other special
points (a branch of ' is a subset homeomorphic to an interval). This gives a bipartite graph &.
Therefore, the total degree of letters p and the total degree of letters ¢ in & are equal. Denote by
N, (resp. Ng) the number of letters p (resp. letters ¢) contained in DU {p}. Since & is a bipartite
graph, we have
2mNy = 2m(N, — 1) + deg p,

where degp is the number of branches of & adjacent to p, and thus we have 1 < degp < 2m — 3.
Therefore 2m(N, — N,) = 2m — deg p, which is impossible. Indeed, |2m(NN, — N,)| is either zero
or greater than or equal to 2m, which is not the case for [2m — degp|. O

Lemma 4.16. Let o be a non-special critical point in Iy, and B € R be its neighbor. If 5 is a root
(letter p) or a pole (letter q) of ¢, then 8 & Iy.

Proof. Assume that § € R is a root of ¢ (a letter p), and let us prove that 5 ¢ I (the case where 3
is a pole of ¢ is symmetric). Performing flattening if necessary, we may suppose that the remaining
non-special critical points in [«, 3] are neighbours to special critical points in [a, 8]. Indeed, since
non-special critical points cannot be neighbours to complex special critical points. Consider an
open interval J C [a, 8] with endpoints a non-special critical point and a special critical point
which are neighbours, and such that J does not contain non-special critical points. Note that if
], B[ does not contain non-special critical points, then it suffices to consider J =]a, 8]. If 8 € Iy,
then the existence of J contradicts Lemma .15

O

By definition, useful critical points of ¢ have positive critical value. However, when m is even,
some of the non-special useful critical points of ¢ = ¢™ may correspond to non-special critical
points of ¢ with negative critical value.

Definition 4.17. A useful critical point x of ¢ = ¢™ is called positive if p(x) > 0.
These useful positive critical points of ¢™ will later play a key role via the following Lemma.

Lemma 4.18. Let U be the set of useful positive non-special critical points in Iy and let N be the
number of solutions of ¢(x) =1 in Iy. Then N <b, + |U]|.
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Proof. Let C be a connected component of the graph of ¢, situated above the z-axis. Let I C I
be the image of C under the vertical projection. It suffices to prove that in I, the number of
solutions of ¢(x) = 1 is bounded above by one plus the number of useful positive critical points.
If this number of solutions is zero or one, the bound is trivial. Otherwise, between two con-
secutive solutions of ¢(x) = 1 in I, there is at least one useful positive critical point by Rolle’s
Theorem.
O

In what follows, by p; (resp. ¢1) we mean any real root (resp. pole) of ¢ outside ]0,1].

Lemma 4.19. Let ug and vy be two non-special critical points in Iy which are neighbours to the
same point p1 (resp. q1). Then the number of useful positive critical points of ¢, contained in
[, vo], is less than or equal to one plus half of the total number of roots (letters p) and poles
(letters q) of ¢ in Jug,vo.

Proof. We only prove the result for the point p; (the case for ¢; is symmetric). If there are no
non-special critical points inside Jug, vg[, then the result is clear by the cycle rule (see Figure |4.11)).

Figure 4.11: An example of a special point outside I that is a neighbor to two non-special
critical points in Ij.

Using Proposition and flattenings of T' if necessary, we may assume that [ug,vg] does
not contain non-special critical points that are neighbours. Then, by Lemma the remaining
non-special critical points in [ug, vo] are neighbours to p;. Indeed, by condition (iii) of (4.3.1), real
non-special critical points cannot be neighbours to complex special points. The cycle rule implies
that between two consecutive non-special critical points in [ug, vp], the total number of special
points (letters p, ¢) is odd. It follows that ¢ takes values of opposite signs at two consecutive
non-special critical points in [ug, vg]. The result follows then as any interval with endpoints two
consecutive non-special critical points contains at least one special point. O

Lemma 4.20. Assume that py (resp. q1) € {0,1}, and let ¢ be the nearest non-special critical
point in Iy to p1 (resp. q1) such that ¢ and py (resp. ¢ and q1) are neighbours. Then in the open
interval I with endpoints ¢ and py (resp. ¢ and q1), the number of poles (resp. roots) is equal to
the number of roots (resp. poles) plus one.

Proof. We only prove the case for p; since the case for ¢; is symmetric. By Proposition [£.14] we
only count the remaining special points in I after flattenning I' with respect to all non-special
critical points in I which are neighbours. Note that by Lemma [£.16] and condition (iii) of (£.3.1),
there do not exist non-special critical points in I after this flattening. Therefore there should be
one root between two consecutive poles of ¢ and vice-versa in I. Finally, by the cycle rule, the
nearest special points to ¢ and to p; in I should both be letters q. O
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We now categorize the non-special critical points in Iy and the special critical points in R.

Definition 4.21. We first divide the set S1 of special points outside Iy in three disjoint subsets:

® Si0 (resp. Si1, S12) is the set of special points in R\Iy which have no (resp. exactly one, at
least two) non-special critical points in Iy as neighbours.

Similarly, we divide the set Sy of special points in Iy into three disjoint subsets:

® 50,0 is the set of special points in Iy which are situated between two non-special critical points in
1y that are neighbours. Note that the points of Sy o are those of Sy which disappear after flattenings.
o Sp2 is the set of special points in Iy which are not in Sy and which are contained in an
interval with two non-special useful critical points that are neighbours of a same point in S1 2 (see

Figure .

Figure 4.12: A point g € S12 and its neighbours: p; € Sp2 and two useful critical points
c1 and cg.

[} 50,1 = So\(S(),O U SO,Q).
Finally, the set U of useful positive critical points in Iy, is divided as follows:

o US11 (resp. US12) is the set of useful positive critical points in Iy that are neighbours to points
of S1.1 (resp. Si2).

e UNy (resp. UNy) is the set of useful positive critical points in Iy that are neighbours to non-special
critical points in Iy (resp. outside Iy).

Remark 4.22. Note that by definition, we have |US1 1| < |S1,1]-

S S
Proposition 4.23. We have |US; 2| < % + [S1,2| and |UNy| < |;7’0|.

Proof. Let us prove the first inequality. Doing flattenings if necessary we may assume that Sy o = 0.

S
Then |US172| S |(2Ji’2|
together with the biggest interval [ug, vo] such that uy and vy are non-special critical points which
are neighbours to this point in S » (see Figure [4.13).

+ |S1,2] follows directly from Lemma [4.19) applied to each point of S o
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Figure 4.13: There exist elements of Sy 2 contained in each of I; and Is.

ot
Let us now prove that |UNp| < | O’Ol. For each point ¢ € UNy, consider its neighbor ¢ in Iy

(¢ is a non-special critical point). By Lemma and condition (iii) of (4.3.1)), the non-special
critical points of ¢ between ¢ and ¢ are only neighbours to each other. Applying Proposition [4.14
to each such interval [¢, ¢] (or [c, ¢]) which is maximal in the sense that it is not contained in another

interval of the same type (with endpoints a useful positive critical point and a non-special critical

S
point in Iy which are neighbours), we get [UNy| < %. O

Definition 4.24. Let T be a dessin d’enfant and x € TNRP!. A blowing up of ' at = is the new
real dessin d’enfant obtained by adding a small circle C' in CPY\T (together with its conjugate C)
which contains x, does not intersect T'\ {x}, and contains letters p, q, r on C \ {x} such that the

cycle rule holds for C' and its conjugate (see Figure . A blowing down of a dessin d’enfant
is the inverse operation.

blowing up

blowing down

Figure 4.14: The two blowing operations used on a dessin d’enfant.

Lemma 4.25. Let D be a connected component of CP'\I' such that its boundary D contains at
least one real non-special critical point. Then 0D contains at least two real special points.

Proof. Consider a connected component of 9D\ RP! as in the statement, doing as many blowing-
downs as necessary, we may assume that for each connected component C' of 9D \ RP!, we have
that |0C| = 2. Note that 9C C RP!. Now, by the cycle rule, D contains at least two special
points. If two such special points are real, then we are done. Otherwise, there exists a connected
component C' of D \ RP! containing a special point of ¢. Now from condition (iii) of , we
get that both points of JC are special.

O

Recall that we denote by HT the union of RP! and the intersection of I' with one component
of CP'\ RP!.
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Definition 4.26. For any ¢ € UN; denote by ¢ its neighbour (a non-special critical point outside
Iy) and consider the two connected components of CP'\ HT' having the complex arc of HT joining
c to ¢ contained in their boundaries. We will call both boundaries associated cycles to c.

Figure 4.15: The associated cycles to c.

Lemma 4.27. We have 2|UN;| < |So.1]|+|S1,0|. Moreover, denoting by k the number of elements
of So,1US1,0 which are not contained in cycles associated to some points of UNy, we have 2|UN7| <
|So.1] + |S1,0] — k. Finally, 2|UN1| = |So,1| + |S1,0] — k only if any such cycle contains at most two
elements of Sp,1 U S1,0.

Proof. Performing flattening if necessary, we may assume without loss of generality that |.Sy | = 0.
We now show that each cycle 0D associated to some ¢ € UN; contains at least one element of
So,1US1,0. Recall that by Lemma 0D contains at least two real special points. We distinguish
two cases.

e Assume that 9D N S1 1 # 0. Then by the cycle rule, we get that dD also contains at least
one letter r (which can be complex) and additional real special points. It is easy to see that none
of these additional points belongs to S1,1 U Sy 2 (see Figure . Therefore, 0D contains at least
one element of Sp 1 U Sy 0.

qo,1 q0,0 Poo T T ¢ r q0,1 Prio=1 ¢ P11

N

Figure 4.16: The indexes of the letters correspond to those of the sets that contain them.
The letter go 1, which is on the left, belongs to one of the associated cycles.

e Assume now that 9D contains an element of S; 2. Then one of the neighbours of this element,
which belongs to 0D N Iy, is either an element of Sy 1 or a non-special critical point in Iy. In both
cases, reasoning as before, we still obtain that dD contains at least one element of Sy 1 U S1 0.
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qo,1 Qoo ™ Poo T roc r qo " pro=1 € P12

NN

r

Figure 4.17: The left go 1 is a critical point in the cycle.

We now divide Iy with respect to the non-special critical points of . Let
1 <cp< -+ <CN

be the non-special critical points of ¢ in Iy. Consider two consecutive non-special critical points
c; and cj41.

Assume first that ¢; and ¢; 41 belong to UN;. We show that |¢;, ¢;4+1[U]¢41, &, where & (resp.
€i+1) is the neighbor of ¢; (resp. ¢;t+1), contains at least two elements of Sy 1 U S1,9. Note that ¢;
and ¢; 41 are non-special critical points outside Ij.

It is easy to see that ]¢;11, ¢;[N(S1,1 U S1,2) = 0. Indeed,]c;, ¢;41[ does not contain non-special
critical points. Therefore the only special points that can be contained in J¢;, ¢;11[U]¢;41, & are
elements of Sp 1 U 51,0, where by Lemma there are at least two of them.

Assume now that only one point, say ¢;, among ¢; and ¢; 11 belongs to UN;. Then the beginning
of the proof shows that the cycle associated to ¢; which intersects [¢;, ¢;41] contains at least one
element of Sy 1 U Sy .

Using again the begining of the proof, we get that the cycle associated to ¢; (resp. cn)
intersecting [0, ¢1] (resp. [cn,1]), contains at least one element of Sy 1 U Si .

Summing all these inequalities (there is no over-counting), we get 2|UN1| < [So1| + |S1,0]-
Furthermore, note that while making this sum, we only consider the points in Sp.1 US1 ¢ that are
contained in the cycles associated to points ¢ € UN;. Therefore, other points in Sp,1 U S 9 do not
contribute to the sum. Denoting their number by k, we get 2|UN:| < |So,1| + |S1,0] — k. Finally,
it is clear from the proof that if 2|UN:| = |So,1| + |S1,0| — k, then any such cycle contains at most
two elements of Sy 1 U S 0. O

4.3.3 End of the proof of Theorem 4.2
By Lemma Remark Proposition 4.23| and Lemma |4.27] we have respectively

S S, S
by < % +1, [USy 1| < |S14], [US12] < ‘% +[S12], |UNo| < % (4.3.2)
and |UN;| < 10,11 + 181,01 -2%|51,0|.

Moreover, we have N < b, + |U| by Lemma Denote by S, the set of all complex special
points of .

Note that a root (letter p) or a pole (letter q) of ¢ can have the value at co. Therefore,
1ol + [$1] < deg P+ deg Q +3 — |S.].
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Thus, since |U‘ = |UNO‘ + ‘UN1| + |U5171| + |U51,2|, |S()| = ‘5070 + ‘5071 + ‘5072 and |Sl| =
‘Sl,O + |51,1| + |5172|, we get
1S1,0] 1S1,0]
N <|So|+ |51 +1— T |Se| < deg P+ deg@Q +4 — T [Sel. (4.3.3)

If |S1,0] > 2 or |S¢| > 1, then by we have N < deg P +deg @ + 2 and we are done. Note
that |S.| is even since S, is the set of complex points together with their conjugates. Therefore,
let us assume that |S1 9| < 2 and |S¢| = 0. The last equality means that all special points are real
and simple.

e Assume that |S1,0| = 0. This means that all special points outside Iy (including 0 and 1)
are critical and are neighbours to non-special critical points in Iy. Consider the open interval Jy
(resp. Jp) with endpoints the special point 0 (resp. 1) and a neighbor ¢y (resp. ¢;) in Iy (see
Figure . As a consequence of Lemma there exists an odd number of special points in Jy
(resp. J1). Note that these special points are elements of Sy 1, and they cannot be contained in
any cycle associated to some ¢ € UN;. Thus, by Lemma [£.27, we have 2|UN1| < [So.1]+ [S1,0] — 2,
and therefore we get N < deg P + deg @ + 3.

Jo N

co

Figure 4.18: Each interval Jy and J; contains an odd number of special points.

We now assume that N = deg P + deg @@ 4+ 3 and prove that this gives a contradiction. Then
2|UN1| < 1850,1] + |S1,0] — 2 and all inequalities in and are equalities. In particular,
|So| is an even number. Then by Remark and the fact that there is an odd number of special
points in Jy (resp. Jp), we get that ¢o (resp. ¢1) is not a positive useful critical point.

This implies that 0 and 1 do not belong to S11 (and thus belong to Si2). Indeed, suppose
on the contrary that one of 0 or 1, say 0, belongs to S7,;. Since ¢y does not belong to US 1, this
implies that |US1 1| < |S1,1], a contradiction.

Now, from 0, 1 € Sy 2 it follows that cg, c; € US1,2. Denote by ¢y € Iy the closest non-special
critical point to 1 such that ¢y is a neighbor to 0, and by K the closed interval with endpoints cg
and ¢y. Recall that

S
US1 2| = ‘% + (512, (4.3.4)

thus by Lemma [£.T9] the number of elements in K NUS 7 is equal to one plus half the number
of elements in K N Sp 2. As cg is not a positive useful non-special critical point, if &y is positive
(resp. negative), then |[KN S 2| is an odd (resp. even) number, and in both cases we get | KNUS 2|
is less than one plus half the number of elements in K N Sp 2. This contradicts (4.3.4).
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e Assume that |S7,0| = 1. This means that there exists only one special point outside Iy that
is not a neighbor to a non-special critical point in Iy. We argue now as in the case |S1 9| = 0. We
have that at least one special point in {0, 1}, say 0, is a neighbor to a non-special critical point ¢y
in Iy. Then, the interval Jy =]0, ¢o[ contains at least one element of Sp ; that is not contained in a
cycle associated to some point ¢ € UN;. Thus by Lemma we get 2|UN1| < [So1]+[S1,0l — 1,
and therefore N < deg P + deg @ + 3.

Assume that neither 0 nor 1 belongs to S1. Then, as discussed in the previous case, since
the points 0 and 1 are neighbours to non-special critical points in Iy, we get that at least two
elements of Sy 1 (one in Jy, another one in Ji, see Fig. are not contained in a cycle associated
to some ¢ € UN;. Therefore by Lemma we get 2|UN1| < |So1| + |S1,0] — 2, which yields
N < deg P + deg @ + 3 and we are done.

Assume now that either 0 or 1 belongs to S7. We assume furthermore that N = deg P +
deg @ + 3 and prove that this gives a contradiction. Using |S1 0| =1, 2|UN1| < |So.1| + |S1,0] — 1,
N =deg P +deg@Q + 3 and ([£.3.3)), we get 2|UN1| = [So1|+ [S1,0
without loss of generality that 0 € Sq,0. We have 0 € S; o N 9Dy, where 9Dy is a cycle associated

— 1 and |Sp| is even. Consider

to some ¢y € UN;. Indeed, suppose on the contrary that 0 is not contained in a cycle associated to
some point ¢ € UN;. We already saw that there exists an element of Sy ; which is not contained
in a cycle associated to some ¢ € UN;. Together with 0 this would give at least two elements
of Sp1 U S1 that are not contained in such a cycle, and thus 2|UNy| = |So1| + |S1,0] — 2 by
Lemma This contradicts 2|UN;| = |So,1| + |S1,0] — 1. Therefore 0 € S1 o N IDy where 0Dy
is a cycle associated to some ¢y € UN;. By the cycle rule and Lemma [£:25] D, contains at least
one real special point other than 0. As |S1| =1 (and 0 € S1) these special points can only be
elements of Sp;. There exists only one special point other than 0 in the interval ]0, co[. Indeed,
otherwise 0Dy would contain 3 elements of Sy 1 U S1 o which implies 2|UN1| < [So,1| + [S1,0] — 1
(by Lemma[4.27), and thus N < deg P + deg Q + 3. Now using Remark we get that ¢ is not
a positive useful critical point, but this contradicts the fact that c¢qg € UN;.

e Assume that |S1o| = 2, then we have N < deg P + deg@ + 3. We assume that N =
deg P + deg @ + 3 and prove that this gives a contradiction. The latter assumption (as discussed
in the case |S1| = 0) means that |Sp| is even and 2|UN;| = |So 1| + |S1,0| since the inequality
in becomes an equality.

We now show that 0 and 1 are elements of S} o. Assume the contrary, say 0 ¢ S1,. Then as
discussed before (case |S1| = 0), Lemma implies that there exists at least one element of
Sp,1 that is not contained in a cycle associated to some ¢ € UN;. Therefore by Lemma we
get 2|UN1| = |So,1| + |S1,0] — 1, a contradiction.

Therefore, the point 0 (resp. 1) belongs to a cycle associated to an element ¢y (resp. ¢1) in
UN;. Lemmashows that both cycles contain at most one element of Sy ; each, since otherwise
2|UN1| < |S0,1| + |S1,0]. However, as discussed before (using Remark , this implies that ¢y
and ¢y are not positive useful critical points, a contradiction.

4.4 The case of two trinomials: proof of Theorem 4.3

It is shown in [LRWO3| that the maximal number of positive solutions of a system of two trinomial
equations in two variables is five. In this section, we prove Theorem [£.3] We recall the proof of
Theorem [£.1] in this special case in order to describe what happens in terms of the dessin d’enfant
I" when the maximal number five of positive solutions is reached. Consider a system
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co-u Fcputt Fegu =cg-u" Feg-ut oy -utt =0 (4.4.1)
where all ¢; € R* , u = (u1,uz) € R? and all w; € Z%.

Lemma 4.28. If a facet e; of the Newton triangle of the first equation and a facet es of the
Newton triangle of the second equation are parallel, then (4.4.1)) has strictly less than five positive
solutions.

Proof. Assume that the Newton triangles of satisfies the conditions of the lemma. Suppose
without loss of generality that the parallel facets e; and e; are the convex hulls of the supports
of the truncated binomials cou™® + ciu™* and c3u™s + cqu™*. We may assume without loss of
generality that wy = ws = 0 and ¢g = ¢5 = 1. Performing a monomial change of coordinates as in
the beginning of Section if necessary, we may also assume that |c;| = |ca] = 1. The system

Y= 6()—*—61:'67

4.4.2
14 e3x™? + cqgx™y™ =0, ( )

with €p,e1 € {—1,+1} and all ms,m4,ns € Q, has the same number of non-degenerate positive
solutions as . Indeed, the system is obtained from by making the monomial
change of coordinates (ui,u2) — (z,y) defined by z = u** and y = u™? which preserves the
number of positive solutions.

Therefore, the number of positive solutions of is equal to the number of positive solutions
in I, ., of f(z) =0, where

f(x) =14 a3z™ + agz™ (1 + €)™

and I, ., = {z € Ryo | €o + €1z > 0}. Since f has no poles in I, ,, by Rolle’s Theorem, if
f(z) = 0 has five positive solutions in I, ., then f’(z) = 0 has four positive solutions in the same
interval. We prove Lemma by showing that the number of positive roots of f in I ,
or equal to 3. Making similar computations as above (at the beginning of this section), we obtain
f'(x) =0« ¢(x) = 1, where

is less

$(w) = 2™ 7" (eo + e12)™ " p(x)

and degp = 1.
Note that the result becomes trivial if €g = e3 = —1 since the first equation of (6.1.1) has no
positive solutions. Therefore, we consider three cases.

o First case: ¢¢ = 1 and ¢; = —1. Then I ., =|0,1], and the result comes directly from

Theorem (4.2)) applied to ¢.

e Second case: ¢¢ = —1 and ¢; = 1. Then I, ., =]1,+o0[, and we consider the function
o(z) = ¢(1/2z). Then #{z € ]1,4+o00[ | #(x) = 1} = #{z € ]0,1[ | ¢(x) = 1}, and the result
follows by applying Theorem (4.2) to

Glx) = @™ (L — 2)" T (),

with degp = 1.
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e Third case: ¢g = 1 and ¢; = 1. Then, ¢ has at most one pole in R+ (a root of p). Similarly
to the proof of Lemma [£.4] we have

¢'() = 2™ TN 1+ @) P ho (),

where hs is a polynomial of degree at most 2, thus ¢’ has at most two roots. Therefore, the
result comes as a consequence of Rolle’s Theorem and by noting that the changes of sign (if
they exist) of ¢ in Ry occur only at a root of p.

O

J

Remark 4.29. Note that as a consequence of Lemma [[.28, we retrieve the fact that if a sys-
tem (4.4.1) has five positive solutions, then the Minkowski sum of the Newton triangles associated
to each equation of (4.4.1) is an hexagon [LRW0J)].

In what follows, we assume that the support of each equation of is non-degenerate i.e.
it is not contained in a line. Furthermore, we suppose that the system has positive solutions, thus
the coefficients of each equation of have different signs. Therefore without loss of generality,
let cg=—1,¢1-¢c0<0,c5 =—1,c3>0and cg > 0.

Since we are looking for solutions of with non-zero coordinates, one can assume that
wo = ws = (0,0). Let k3 be the greatest common divisor of the coordinates of ws. Setting
z=cs- u¥ and choosing any basis of Z? with first vector 1713, - w3, we get a monomial change of
coordinates (u1,us) — (z,w) of (C*)2 such that c3-u®* = 2% and ¢y-u™* = zF1w!t. Replacing w by
w™ ! if necessary, we assume that I, > 0. Indeed, I # 0, since by assumption, the support of each
equation of is non-degenerate. With respect to these new coordinates, the system
becomes the polynomial system

—1+4ay - 2wl ay - 2Pl = 14 2R Rl = 0 (4.4.3)

where a; has the same sign of ¢; for i = 1,2. Note that since c3 and ¢4 are positive,
and have the same number of positive solutions.

We now look for the positive solutions of . The second equation of this system may be
written as w = (1 — z)?, where z := 2%3, a = —ky/(ksls) and B = 1/l4. It is clear that since
z,w > 0, we have x € Iy =]0,1[. Plugging z and w in the first equation of we get

—1+ar -2 (1—2)" +ay-2*2(1—2)72 =0, (4.4.4)
kily — k4l li . . :
where «a; = il and f; = T for i = 1,2. The number of positive solutions of (4.4.1])
3l4 4

is equal to the number of solutions of (4.4.4) in I. Therefore we want to bound the number of
solutions in Iy of f(z) = 1 where

f(@) :=a;-2**(1 — )" +ay - x°2(1 — )" (4.4.5)

Note that the function f has no poles in Iy, thus by Rolle’s theorem we have §{z € Iy |f(z) =
1} <t#{x el |f'(z) =0} + 1. Since

f1(@) = arz® 11— 2) () + agae® (1 — 1) pa (),
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where p;(z) = a; — (a; + Bs)x for i = 1,2, we get f'(z) =0 < ¢(x) = 1, where

_a 1:041*012(1 _ x)ﬁl*ﬁzpl(m)
d)('r) - a9 Pz(ff)

Thus applying Theorem (with degp; = degps = 1) we get #{x € Iy |f'(z) = 0} < 4, and
therefore S(3,3) < 5.

We now start the proof of Theorem [£.3] The property that A; and Ay do not alternate is
preserved under monomial change of coordinates. Thus it suffices to prove Theorem [4.3] for the
system . As we just saw before, if has five positive solutions, then ¢(z) = 1 has
four solutions in Iy. We look for necessary conditions on the dessin d’enfant T' = (¢™)~}(RP?)
(where m is a natural integer such that ¢ = ¢™ is a rational function as in the previous section).
More precisely, we want to know the positions of the root p = al(j-lﬁl and the pole ¢ = a;_fﬁQ of ¢
relatively to 0 and 1 in RP?.

The normal fan of a n-dimensional convex polytope in R™ is the complete fan with one-
dimensional cones directed by the outward normal vectors of the (n — 1)-faces of this polytope.
Denote by A; and Ay the Newton polytopes of the first and the second equation of respec-
tively.

Definition 4.30. Let A, and Ay be two 2-dimensional polygons in R? with the same number of
edges. In other words, their respective normal fans F1 and Fa have the same numbers of 1-cones
and 2-cones respectively. We say that Ay and Ao alternate if every 2-cone of Fo contains properly
a 1-cone of F1 (properly means that the origin is the only common face), see Figure .

Figure 4.19: Two polytopes that alternate.

Another example that illustrates Theorem 4.3 (where A; and Ay do not alternate) is the
System
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2® — (49/95)23y + y° = y° — (49/95)zy> + 2° = 0, (4.4.6)

taken from [Roj| that has five positive solutions.

Figure 4.20: The Newton polytopes, their Minkowski sum and the associated normal fans

of (25).

Recall that k3 > 0 and l4 > 0. Let F; (resp. F2) denote the normal fan of A; (resp. Ay). The
polygon A, together with F» are represented in Figure [£:21] The outward normal vectors of the
three edges of Ay are the vectors Fy3 = (0, —ks), Foa = (—la, k4) and F3 4 = (l4, k3 — k4). The
one-dimensional cones of F; are generated by vectors Fy1 = €p1(—l1, k1), Fo,2 = €92(—l2, ko) and
F172 = 612(11 — ZQ, kz — ]{51), where €ij € {:l:l}

(kay 1a) A A
Foa !

Az
Ao

(0,0) (K3, 0)

A\

Fo3

Figure 4.21: The triangleAy and its normal fan Fs.

Recall that oy and ag (resp. 1 and f2) are the powers of x (resp. 1 — ) appearing in (4.4.4).
Lemma 4.31. If (4.4.3)) has five positive solutions, then we have the following conditions
ar —az # Po— P, a1 Faz, b1 # P, ai+ 60 #0, a; #0and B; #0  for i=1,2.

Proof. Consider any two normal vectors of Ay and A, each, if they are collinear, then by Lemma[£.28]
the system (4.4.3)) has strictly less than five positive solutions. We now proceed by contradiction.
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Assume that a; — ag = 85 — 81. Then we have
kily — kaly — koly + kalo— ksla — ksly
k3l4 N k314

thus the wedge product F3 4 A Fy o vanishes, a contradiction. Similarly, if a3 = aq (resp. 81 = B2),
then we get

= (ll — lQ)(k’g — k4) + l4(k‘1 — k‘g) = 0,

kily — k4l koly — k4l
1 TR R T2 k(e — 1) — la(ks — k) =0
k‘3l4 k3l4

(vesp. k3(li — l2) = 0) and thus Fy4 A F12 = 0 (resp. Fps A Fio = 0), a contradiction. Let
i € {1,2}. Using the same arguments, if o; =0, 8; =0 or a; = —f3;, we get

kils —kal;y =0 = FoaANFp,; =0,

;=0 = Fo73/\F07i =0 or
kils — kali ksl
ksly " ksly

respectively, and in each of these cases this is a contradiction. O

= k;ly — lz(k4 — k3) =0= F3’4 A Foﬂ' =0

Corollary 4.32. If (4.4.3) has five positive solutions, then 0 (resp. 1, 00) is a special point of ¢
and p (resp. q) does not belong to {0,1,00}.

1

Without loss of generality, we assume that oy > a9 considering ¢~ instead of ¢ if necessary.

The following key result will play an important role in relating the arrangment of the special points
of ¢ and the faces of A + As.

Proposition 4.33. Assume that §{x € Io| ¢(x) =1} =4. If f1 > [a, then
(o751 Qo (%) aq
< <0 or 1< < .
ai + f1 az + B2 az + B2 ar + B
And if By < B2, then

(oD} aq (67) (03]
<1l< or <0< <1.
as + o ar + p1 g + B2 ar + p1
Before giving the proof of Proposition we need an intermediate result. Assume that
¢(x) = 1 has four solutions in I and consider the open interval I with endpoints p and §. Recall

that we have a; - ag < 0. Therefore the sign of ¢(z) in Iy is the same as that of

0<

p1(x)
p2(x)

Thus the solutions of ¢(x) = 1 are either all inside or outside I. Indeed, the sign of ¢ changes when
passing through p (resp. ¢). Note that  # §, because otherwise we get ¢(z) = kx®1=22(1—x)51—F=
for some k € R, which would imply that the equation ¢ = ¢™(z) = 1 has at most two solutions in
Iy.

Lemma 4.34. We have I gZ Iy and Iy SZ I.

Proof. We argue by contradiction. First, assume that I C I. Denote by Jy (resp. Jy) the left
(resp. right) connected component of Iy \ I. Three cases exist.
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. Assume that all four solutions (letter ) of ¢(z) = 1 are contained in I. Then by Rolle’s

theorem, there exists at least three non-special critical points of ¢ in I. Recall that ¢ has
at most three non-special critical points, this means that all non-special critical points of
¢ are contained in I. Furthermore, we have a; > ag, so 0 is a root (letter p) of ¢, and
thus ¢ < p, which implies that 1 is a pole (letter ¢) of ¢. In this case, if co is a root (resp.
pole ) of ¢ (recall that by Corollary oo is either a root or a pole of ), then there
exists a non-special critical point that is smaller than 0 (resp. bigger than 1). This gives a
contradiction.

. Assume that the four solutions of ¢(x) = 1 in Iy belong to Jy (the case where the roots

are in Jp is symmetric). Then by Rolle’s theorem, all non-special critical points of ¢ (recall
that it has at most three non-special critical points) are contained in Jy. As a consequence
of Lemma [£.20] we get that none of these non-special critical points can be neighbours to
the special point 0 or 1. Moreover, by Lemma [£.16] these non-special critical points cannot
be neighbours to p or ¢. The cycle rule shows that the non-special critical points in Jy
cannot be neighbours to each other. We conclude that the only possible neighbor of each
non-special critical point in Jj is the point co. This contradicts the cycle rule.

. Assume that at least one solution of ¢(x) = ¢™(x) = 1 is contained in Jy and at least

another one is contained in J;. Thus, in particular all four solutions of ¢(z) = 1 belong to
JoUJq (since they are all either inside or outside I ). Then by Rolle’s theorem, there exist at
least two non-special critical points of ¢ contained in Jy U J;. Therefore, the interval I does
not contain non-special critical points since I can only contain an even number of non-special
critical points. As a consequence of Lemma these non-special critical points cannot be
neighbours to special points 0 or 1, and by Lemma they cannot be neighbours to p or
q.

We now prove that non-special critical points in JyUJ; cannot be neighbours. Indeed, assume
on the contrary, that there exists a non-special critical point ¢ € Iy that is a neighbor to a
non-special critical point ¢ € Iy. Then both ¢ and ¢ cannot be contained in the same interval
Jo or Ji, otherwise this will contradict the cycle rule. Assume without loss of generality
that ¢ € Jy and ¢ € J;. Recall that ¢ has at most three non-special critical points in Iy. By
Proposition [4.14] among ¢ and ¢, one of them, say ¢, is not useful. We show that ¢ is the
only non-special critical point of ¢ contained in Jy. Assume that there exists a non-special
critical point in Jy other than ¢. Then, as ¢ is not useful, Jy will contain at most one letter
r. Moreover, ¢ is the only non-special critical point in J;, and thus J; contains at most
two solutions of ¢(x) = 1. Therefore the total number of solutions of ¢(x) = 1 in Jy U Jy,
and thus in Iy, can be at most three, a contradiction. We have proved that ¢ is the only
non-special critical point of ¢ contained in Jy. Note that as Jy contains only one non-special
critical point, which is not useful, we have that Jy does not contain solutions of ¢(z) = 1.
Finally, since J; has at most two non-special critical points, it has at most three solutions of
¢(x) = 1. As before, we get that ¢(x) = 1 has at most three solutions in Iy, a contradiction.
We have finished to prove that non-special critical points in Jy U J; cannot be neighbours.

We now prove that non-special critical points in Jy U J; cannot be neighbours to non-special
critical points outside Iy. Arguing by contradiction, assume that there exists a non-special
critical point ¢y € Jy U J; that is a neighbor to a non-special critical point ¢; ¢ Iy. Then,
as p and ¢ are inside I, the number of special critical points in the open interval K, with
endpoints ¢y and c¢1, contains an odd number of special points among 0, p, ¢ and 1. Note



CHAPTER 4. POSITIVE INTERSECTION POINTS OF A TRINOMIAL AND A t-NOMIAL
69 CURVES

that there do not exist non-special critical points in K \ Ip. Indeed, otherwise ¢y would be
the only non-special critical point of ¢ in Iy, which would contradict the fact that ¢(z) =1
has four solutions in Iy. Also there is no non-special critical points in K N Iy. Indeed,
otherwise there would be only one such point in K N Iy, which obviously is not a neighbor
of ¢y or ¢;. Moreover, this non-special critical point in K N I is not a neighbor to p or ¢ by
Lemma [4.16] and not a neighbor to 0 or 1 by Lemma 4.20} This shows that there cannot
be a non-special critical point K N Iy. The odd number of special points in K cannot be
equal to one since this would contradict the cycle rule. Thus this number is equal to three.
Consider the closed disc ® in CP! with boundary given by the union of K and a complex
arc of I" joining ¢g to ¢;. Note that K contains either two roots and one pole of ¢, or two
poles and one root of . Moreover, K does not contain non-special critical points of ¢. It
follows that the cycle rule is violated inside 2.

To sum up, there are at least two non-special critical points in JyU J;. We showed that they
are not neighbours to 0, 1, p, ¢ or other non-special critical points. Moreover, it is obvious
that they cannot be all neighbours to co by the cycle rule, thus we get a contradiction.

We have finished to prove that I SZ Iy, and now we prove that Iy SZ I. Assume on the contrary
that Iy C I. We have 4 solutions of ¢(x) = 1 in Iy, so by Rolle’s theorem, all three non-special
critical points of ¢ are in Iy. This implies that § < 0 and p > 1. Indeed, 0 is a root of ¢ (since
a1 > ag), and there is no non-special critical points in I \ Iy. Recall that by Corollary the
value oo is either a root or a pole of ¢. If co is a root (resp. pole) of ¢, then by Rolle’s theorem,
there should be a non-special critical point between p (or ¢) and oo, a contradiction. O

4.4.1 Proof of Proposition [4.33

By Lemma we either have that Iy N I = § or that only one endpoint of I is contained in I.

Assume first that only one endpoint € of I belongs to I,. We already saw that the four solutions
of ¢(xz) = 1 in Iy are all either inside or outside I. Therefore these four solutions, and thus all
three non-special critical points of ¢, are all either bigger or smaller than €. Recall that 0 is a root
of .

- Assume that all four solutions of ¢(x) = 1 are bigger than é. Then, as shown at the top of
Figure [4.22] € is equal to ¢, and thus p belongs to |1, co[, since otherwise this would give a
non-special critical point smaller than é. It follows that 1 is a pole of ¢, which means that

B1 < B2. Moreover, we get that 0 < az"fﬁQ <l< a1a+161'

- Assume now that all four solutions of ¢(z) = 1 are smaller than é. Then, as shown at the
bottom of Figure ¢ is equal to p, and thus ¢ belongs to |oo,0[, since otherwise this
would give a non-special critical point bigger than €. It follows again that 1 is a pole of ¢,

which means that 8, < 82. Moreover, we get that a;_f& <0< aﬁlﬁl < 1.

Assume now that I NIy = 0. Recall that by Rolle’s theorem, all three non-special critical
points of ¢ are contained in Ij.

- Assume that both p and § are negative. Since 0 is a root of ¢, we have p < § < 0 i.e.

a1 azofﬁ2 < 0. Therefore 1 is a root of ¢, which means §; > (B2 (See top of

a1+51 <
Figure [4.23).
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- Assume that both p and ¢ are bigger than 1. Since 0 is a root of ¢, we have that oo is a
pole, and thus 1 < g < p, i.e. 1 < < alaiﬁgl Therefore 1 is a root of ¢, which means
that 81 > B2 (See bottom of Figure [4.23)).

p=0 r q r r r r q=1 D q=00
q p=0 r r r r D r q=1 P =00

Figure 4.22: At the top: 0 < ¢ < 1 < p. At the bottom: § <0< p <1

D q pP=0 r r r r pP=1 q=00

P =0 r r r r pP=1 q p q=0o0

Figure 4.23: At the top: p < ¢ < 0. At the bottom: 1 < §<p

4.4.2 End of proof of Theorem 4.3

Assume that ¢(z) = 1 has 4 solutions in Iy. We prove that A; and Ay do not alternate by looking
at each of the four cases of conditions presented in Proposition We prove that in each case,
there exists a 2-cone A; of the fan F5, that does not contain any 1-cone of ;. In order to do that,
we look at the signs of the wedge products of the generators of the 1-cones of F; and Fs.

Recall that
aq

ar+ 61’

~ a2
q=—"—, a1 > g, and ks, ly >0,

D= ;
ag + B2
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and for 7 = 1,2, we have

;= kila = kal and B; = l—l (4.4.7)
ksly la

e Assume that 81 < B2 and 0 < § < 1 < p. From the proof of Proposition we know that
the roots of ¢(z) =1 are inside |, p[, thus (a1 + 81) (a2 + B2) < 0 since p;(z) = o — (o; + B;)x for
i =1,2. The fact that both p and ¢ are positive implies that «;(a; +51) > 0 and as(az + f2) > 0.
Consequently, we have ajas < 0. Furthermore, as a; > as, we have as < 0 < a3. From as < 0
and 225~ > 0, we get ap + 52 < 0 and thus as + 62 < 0 < ag + f1. Furthermore, as ag + B2 < 0
(resp. a1 + 1 > 0) 25 <1 (resp. 1 < %), we get B < 0 (resp. 1 < 0). We have
% <0< %, oy < 0 and ﬂz < 0, therefore o182 < anf3;.

The last inequality gives kilo < k2lq, and thus Fp 1 A Fp2 < 0. Moreover, from , we have
l1 <0, < 0andl;—Ily < 0. We deduce that the first coordinate of Fy 1 (resp. Fp 2, Fi 2) is positive
(resp. negative, negative). Therefore Fy1 = (—l1, k1), Fo2 = (l2, —k2) and Fi o = (l1 —l2, ka — k1).
Recall that Fy 3 = (0, —ks), Fo4 = (—ls,k4) and F5 4 = (l4, ks — ka). We have the following.

- F0,3 A\ FLQ = k‘gl4(ﬁ1 — 62) = kg(ll — l2> <0, thus FLQ ¢ Ag.
- F3,4 A FO,l = k3l4(0l1 + 51) = kll4 — (k4 — kg)ll > 0, thUS F071 ¢ Ag.

- F()’g A F3,4 = k3l4(062 =+ ﬁg) = koly — (k4 — kg)lg <0, thus F072 % Ag.

We conclude that the 2-cone A3 does not contain any 1-cone of Fy, and therefore A; and Aq
do not alternate.

e Assume that 81 < 83 and § < 0 < p < 1. From the proof of Proposition we know that
the solutions of ¢(x) = 1 are inside |, p[, thus (a1 + 1) (2 + f2) < 0 since p;(x) = a; — (a; + Bi)x
for i = 1,2. The fact that p > 0 and ¢ < 0 implies that a;(a; + 81) > 0 and as(as + 82) < 0.
Consequently, we have ajas > 0. Moreover, we have ag < 0. Indeed, assume on the contrary,
that we have ag > 0. Then a1 > 0, as + B2 < 0 and a7 + 1 > 0. Recall that +B < 1 (resp.
o +/31 < 1), thus B2 < 0 (resp. B1 > 0), which contradicts $; < B2. Therefore we have a; < 0,
ag—i—ﬁg >0, a1 + f1 < 0 and thus oy 4+ 81 < as + B2. From as + B2 > 0 (resp. a3 + 1 < 0) and
a2+ﬁ2 < 1 (resp. al(j’lﬁl < 1), we get Sz > 0 (resp. 1 < 0). We have % <0< z—;, ag < 0 and
B2 > 0, thus a1 82 < asfi.

The last inequality gives kil < kalq, and thus Fy1 A Fpo < 0. Moreover, from (4.4.7), we
have l; < 0 and 0 < l;. We deduce that the first coordinate of Fy 1 (resp. Fp o, Fi,2) is positive
(resp. positive, negative), therefore Fy 1 = (—l1, k1), Fo2 = (lo, —k2) and Fy o = (lh — lo, ko — k1).
Therefore we have the following.

- F0’4 A\ FLQ = k314(0¢1 — CVQ) = k4(l2 - ll) — l4(k2 - kl) > 0, thus FLQ ¢ A4.
- F374 A FO,l = kgl4(0[1 —+ [31) = kll4 — (k4 — kg)ll < 0, thus F071 ¢ A4.

- F(),g A F3)4 = ]{53[4(042 + ﬁz) = k)Ql4 — (]{)4 — ]fg)lg > 0, thus F0,2 §§ A4.

We conclude that the 2-cone A4 does not contain any 1-cone of Fp, therefore Ay and As do
not alternate.
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e Assume that 81 > (2 and p < ¢ < 0. From the proof of Proposition [£:33] we know that the
solutions of ¢(x) = 1 in Iy are outside |p, [, thus (a1 + 51) (a2 +52) > 0since p;(x) = a; — (a; +5;)x
for i = 1,2. We have that both of ¢ and p are negative, thus as(as + 32) < 0 and ay(ag + 1) < 0,
and consequently we get ayas > 0. Recall that a; > g and By > (9, therefore a; + 81 > ag + Bs.
Moreover, we have ﬁﬂh < #—5—/32 since (a1 + B1)(a2 + B2) > 0. We have 5 < 0. Indeed, assume
on the contrary that 81 > 0. Then a; (a1 +51) < 0 gives a; < 0, and thus as < 0. Therefore we get
ag < a1 < 0 and consequently 0 < ﬁ < m gives a;‘ijﬁz ala7+1131’ which is a contradiction
with p < ¢. Then f2 < 1 <0, and a1(a1 + 51) < 0 (resp. as(as + B2) < 0) gives ag > 0 (resp.
ag > 0) and (ag + B1) < 0 (resp. (a2 + B2) < 0). Having s < ay and 83 < 0 (resp. as > 0 and
B2 < B1) gives a1 82 < aafy (resp. agfla < azf1) and therefore ayfe < anfs.

The last inequality gives kilo < k2lq, and thus Fy; A Fp 2 < 0. Moreover, from , we have
lo <13 < 0. We deduce that the first coordinate of Fy 1 (resp. Fp 2, Fi 2) is positive (resp. negative,
positive), therefore Fy1 = (=1, k1), Fo2 = (l2, —k2) and Fy o = (I3 — l2, k2 — k1). Therefore we
have the following.

- F0,4 A\ FO’Q = k3lyan = lyko — k4ly > 0, thus FO)Q ¢ Ay
- F3,4 A FO,l = k3l4(a1 + ﬂl) = kily — (k4 — kg)ll <0, thus F071 ¢ Ay.

- F074 A FLQ = kgl4(0¢1 — 062) = k4(12 — ll) — l4(k2 — kl) > 0, thus FLQ §é A4.

We conclude that the 2-cone A4 does not contain any 1-cone of Fp, therefore Ay and As do
not alternate.

e Assume that 51 > P2 and 1 < ¢ < p. From the proof of Proposition we know that
the solutions of ¢(z) = 1 in Iy are outside |p, ¢[, thus we have (o + 51) - (a2 + f2) > 0 since
pi(z) = a; — (a; + B;)x for i = 1,2. Both of ¢ and p are positive, thus we get as(as + B2) > 0 and
a1(ag + B1) > 0. Consequently, we get that ajao is positive. Recall that a1 > ag and 51 > fa,
therefore a; + 81 > as + B2, and thus ﬁ% < #H& since (a1 + 1) - (a2 + B2) > 0. We have
B1 > 0. Indeed, assume on the contrary, that 5 < 0 (and thus 85 < 0 since f2 < 7). Then
1 <ai/(ag+ B1) (resp. 1 < ag/(ae + B2)) gives a; > 0 (resp. ag > 0). Moreover, 2 < 81 <0
(resp. 0 < a;"if& < alai‘ﬁﬁl ) yields a1 82 < asf (resp. asofy < aif2), and thus a contradiction.
Since 1 < Qlo‘(i’l,Bl and §; > 0, we get a; < 0, and thus a; + 1 < 0. Furthermore, this gives
g+ P2 < 0 since (a7 + B1) (a2 + B2) > 0, and consequently as(as+ 82) > 0 yields ay < 0. We have
B2 > 0 since 1 < a;jfﬁz, and therefore we get a3 82 > aip81 since 0 < By < B1 and as < ay < 0.

The inequality a8z > aaf1 gives k1la > kali, and thus Fy 1 A Fp 2 > 0. Moreover, from ,
we have 0 < Iy < ;. With these relations we deduce that the first component of Fp; (resp.
Fy2, F12) is positive (resp. negative, negative), therefore Fy1 = (I3, —k1), Fo2 = (—l2,k2) and
Fi2 = (I — ly,k1 — k2). Therefore we have the following.

- FO,Q AN Fo,g = kgl452 = k312 > O7 thus F072 ¢ A3.
- F(),l A\ F3)4 = k3l4(a1 + 61) = k}ll4 — (]{)4 — kg)ll < 0, thus FO,l §§ A3.

- F374 A\ F172 = k314(a1 + ﬁl — Q0 — 62) = (k4 — kg)(lz — ll) — l4(l€2 — kl) > 0, thus FLQ ¢ Ag.

We conclude that the 2-cone Az does not contain any 1-cone of Fi, therefore A; and As do
not alternate.



Chapter 5

Characterization of circuits
supporting polynomial systems
with the maximal number of
positive solutions

Recall that a circuit is a set of n 4+ 2 points in R™ that are minimally affinely dependent. In this
chapter, we prove the following result.

Theorem 5.1. A circuit W in R™ supports a system with n+ 1 non-degenerate positive solutions
if and only if there exists a bijection

{1,....n+2} — W
) —  w;

such that every affine relation on VW can be written as

s n+2
Z Wy = Z AWy,
=1 s+1
where s = [(n+2)/2] and all o, «; are positive numbers which satisfy
T s+r r+1
Zai< Zai<2ai for r=1,...,s—1 4f n iseven
i=1 i=s+1 i=1
or
r s+r+1 r+1
Zai< Zai<2ai for r=1,...,s—1 if n s odd.
i=1 i=s+2 i=1
If Theorem is true for any circuit W C Z", then it is also true for any circuit W C R".
Indeed, assume that a system with support a circuit W = {w1, ..., wp1+2} C R™ has n + 1 non-
degenerate positive solutions. Then for ¢ = 1,...,n + 2, points w; € Q™ that are sufficiently close

to w; support a (generalized) polynomial system with the same coefficients and having at least
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n + 1 non-degenerate positive solutions, and thus exactly this number of non-degenerate positive
solutions since n + 1 is an upper bound. Now, multiplying all w; by some integer, one acquires
a system supported on a circuit in Z™ with n + 1 non-degenerate positive solutions. Since the
inequalities appearing Theorem [5.1] are strict, if the first circuit W satisfies them, then they are
satisfied by the new circuit W as well, and vice-versa.

Assume that W = {wy, ..., wp42} is a set of n+2 points in Z™ and consider any affine relation
Z?jf Ajw; = 0 with integer coefficients. After a small perturbation, any system with n equations
in n variables z = (z1,...,2,) and supported on W can be reduced by Gaussian elimination to a
system

2W = Py(z¥m+1) for i=1,...,n, (5.0.1)

having at least the same number of non-degenerate positive solutions, where Py, ..., P,41 are real
polynomials of degree 1 in one variable (see Section . We define in Section a real rational
function ¢(y) = H?:ll PX. We apply Gale duality (c.f. [Bih15, BS0T7, [BS0S]) to obtain a corre-
spondence between non-degenerate solutions of and those of p(y) = 1. This correspondence
restricts to a bijection between non-degenerate positive solutions of the system and the solutions
contained in the (possibly empty) interval A := {y € R| Pi(y) > 0fori =1,...,n+ 1}. After
homogenization, we get a real rational map CP! — CP! that we denote again by . The real
dessin d’enfant T' associated to ¢ : CP! — CP?!, is the inverse image of the real projective line
under . Given that ¢(y) = 1 has n+ 1 solutions in A, we deduce by analyzing I" in Section
the inequalities of Theorem Note that the solutions of ¢(y) = 1 are the roots of

Gi(y) = H Pi)\i(y) - H Pi_/\i(y)

Ai>0 i <0

in A+.
For the “if” direction of Theorem [5.1} we apply in Section Viro patchworking to the
polynomial

Gy) =[] Phiw - [ P W), (5.0.2)

Ai>0 A <0

where the P, ; are Viro polynomials of degree 1.

5.1 Technical preamble

Given a system of n polynomials in n variables with total support a circuit W = {w1, ..., wny2},
perturbing slightly its coefficients if necessary, we may assume that the coefficients of z**,..., 2%~
in the system form an invertible matrix (a small perturbation does not decrease the number of non-
degenerate positive solutions). Since we are only interested in non-degenerate positive solutions,

we may assume that w,y1o = 0 and we transform the original via Gaussian elimination into an

equivalent system such that the coefficients of z*1,..., 2" form a diagonal matrix
2Y = Pi(z¥+) for i=1,...,n, (5.1.1)
where P;(z%n+1) = a; + bjz*~+! for ¢ = 1,...,n. We start by giving a brief description about

Gale duality for the system (5.1.1) (c.f. [Bih15, Bih07, BS08|]). We use the linear relations on W
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to obtain a special polynomial in one variable, called Gale polynomial. We have that any integer
linear relation among the exponent vectors of W

n+1

> Aiwi =0 (5.1.2)
i=1
gives a monomial identity
(Zwl))‘l . (an)/\n (an+1)>\n+1 =1.
If we substitute the polynomials P;(z*»+!) of (5.1.1)) into this identity, we obtain a consequence of
the latter equation
(Py (20 )M - (P (20 )Mo (0 it = 1, (5.1.3)

Under the substitution y = z*+', the polynomials P;(z*"+1) become linear functions P;(y). Set

P,+1(y) = y. Then (5.1.3)) becomes
n+1
[P =1, (5.1.4)
i=1
which constitutes a Gale transform associated to the system (5.1.1). Recall that
A ={y| P(y)>0fori=1,...,n+1}.

We can write equivalently (5.1.4) as G(y) = 0, where G is the Gale polynomial defined by

)= Pw- T 2w (5.1.5)

Ai>0 A <0

Proposition 5.2. [BS07] The association
¢wn+1 : Ri Sz — gWntl —. y€R+

is a bijection between solutions z € R’} of the diagonal system (5.1.1) and solutions y € A
of (5.1.4) which restricts to a bijection between their non-degenerate solutions.

5.2 Proof of the “only if’ direction of Theorem /5.1

Set Poya2(y) =1 and Apyo = — Z?:ll Ai- We see P, 19 as a polynomial of degree 1 having a root
at co. In what follows, we study the solutions of ¢(y) = 1 contained in A, where

n+2

o) = [T P 0). (5.2.1)

Recall from Chapter [4| that a point x € R U {oo} is a special point of ¢ if z is either a root
or a pole of ¢. Conversely, a non-special critical point x € R of ¢ is a root of ¢’ such that x is
not a special point of . In what follows, we see ¢ (after homogenization) as a real rational map
Ccrt — CP.

Since the graph I' = ¢~ !(RP!) is invariant under complex conjugation, it is determined by
its intersection with one connected component H (for half) of CP! \ RP!. In all the figures of
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this chapter, we will only show one half part H N T together with RP' = OH represented as a
horizontal line. Moreover, for simplicity, we omit the arrows. See Chapter [2] for more details on
real dessins d’enfant.

Let a, b be two critical points of ¢ i.e. vertices of I'. Recall from Chapter [4] that a and b are
neighbours if there is a branch of I'\ RP! joining them such that this branch does not contain any
special or critical points of ¢ other than a or b. In what follows, we assume that p(y) = 1 hasn+1
solutions contained in A, . Since the latter interval does not contain special points of ¢, by Rolle’s
theorem, the function ¢ has at least n non-special critical points in A, and by Remark [5.3] the
non-special critical points of ¢ (all n of them) are contained in A.

Remark 5.3. It is proven in [Bih07, proof of Proposition 2.1] that

o) =yt [P W) H ), (5.2.2)

where deg H < n. Therefore ¢ has at most n non-special critical points.

Assume that A, is a non-empty interval. Note that all special points of ¢ are contained in
RP!, and that by definition, the endpoints of A, are special points of . Choose an orientation

of RP! and enumerate the special points 1, ..., 2, 2 of ¢ with respect to this orientation so that
i < xip1 fori=1,...,n+ 1 and the endpoints of A, are z; and z,15 (see Figure |5.1)). We also
renumber the polynomials P; so that x; is the root of P; fori=1,...,n+ 2.

Ay

Tn+1 Tn+2 el €2 T3 s

Figure 5.1: The domain of positivity A.

Lemma 5.4. We have A\jA\iy1 <0 fori=1,...,n+1.

Proof. Consider a couple z;, ;11 of two consecutive special points of ¢ with ¢ € {1,...,n + 1}.
Then these two points are endpoints of an open interval in RP' which does not contain special
points or non-special critical points. By the cycle rule, this implies that one endpoint is a root
(letter p) and the other is a pole (letter ¢) of . O

We will assume that for i = 1,...,n + 2, we have A\; > 0 if 7 is odd, and \; < 0 if 7 is even.
Lemma 5.5. The non-special critical points of ¢ cannot be neighbors to each other.

Proof. First, note that all special points of ¢ are contained in RP'\ A,. Consider the branch
of I' contained in one of the connected components of CP! \ RP! joining two non-special critical
points. Then one of the two connected components of CP* \ T' adjacent to this edge will have a
boundary disobeying the cycle rule. O

Lemma 5.6. A special critical point of ¢ cannot be a neighbor to more than one mon-special
critical point.

Proof. Assume that there exists a special critical point « of ¢ that is a neighbor to at least two
non-special critical points of ¢ (in RP!). Let ¢; and ¢ be two such consecutive non-special critical
points. Consider two branches of I' contained in one of the connected components of CP! \ RP!
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joining « to ¢; and « to co respectively. Then one of the two connected components of CP! \ T’
adjacent to these two branches will have a boundary containing only « as a special point, and thus
disobeying the cycle rule. O

Lemma 5.7. The special points x1 and x,42 of ¢ are not neighbors to any of the non-special
critical points.

Proof. Assume that x; is a neighbor to a non-special critical point ¢ (the case where z,42 is a
neighbor to c¢ is symmetric). Recall that Ay does not contain special points of ¢. Consider the
branch of ' contained in one of the connected components of CP! \ RP! joining x; to ¢. Then
one of the two connected components of CP! \ T' adjacent to this branch will have a boundary
containing only z; as a special point, and thus disobeying the cycle rule. O

Recall that ¢ has n non-special critical points all contained in A,. Let co,...,c,4+1 denote
these points numbered so that x,419 < cpi1 < cp < -+- < a2 < 7.

Proposition 5.8. Fori=2,...,n+ 1, the special point z; is a neighbor to ¢; (see Figure .

Proof. First, by Lemma [5.7, we have that the roots of P; and P, s are not neighbors to non-
special critical points. Recall that there exists n non-special critical points in Ay. Therefore, by
Lemmata[5.5] and 5.6, we have that for i = 2,--- ,n+ 1, the special point z; is a neighbor to only
one non-special critical point ¢;. Consider the closed interval I C RP! with endpoints z; and c¢;
and which contains z;. The special points in I are x1, s, ..., z; and the non-special critical points
in I are cy,...,c;. Then the non-special critical points in I can only be neighbors to special points
in I'\ {z1} (see Lemma . This induces a bijection between {zs,...,2;} and {ca,...,¢;}, thus
i=7.

I5 Cy C3 C2 T D) T3 Ty

N

Figure 5.2: The graph I satisfying Proposition for n = 3.

O

Lemma 5.9. The special point x1 (resp. Tpn+2) of ¢ can only be a neighbor to the special point xo
(resp. Tyi1) of p.

Proof. We prove the result only for x; since the case for x, 2 is symmetric. Consider the open
interval I with endpoints ¢y and x5 containing 1. By Proposition [5.8] we have that ¢ and x5 are
neighbors. The result comes as a consequence of Lemma and of the fact that there does not

exist special points or non-special critical points in I other than z; (See Figure . O
Lemma 5.10. Fori=1,...,n, the only special points which can be neighbors to x;+1 are x; and

Ti4+2-
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Proof. Assume first that i = 1 (the case i = n is symmetric). Recall that by Proposition the
special point zo (resp. x3) and co (resp. c¢3) are neighbors. Therefore, the only other possible
neighbors to x5 are 1 and z3 (see Figure .

€3 C2 1 ) x3

Figure 5.3: The special point x5 can only be neighbours to x; or 3.

Assume now that i # 1 and i # n. Recall that by Proposition the point x; (resp. x;y2) is
a neighbor to ¢; (resp. ¢;12). Consider the open disc C in CP! with boundary given by the union
of [¢iya,¢i], [, Tire] and the complex arcs of ' joining ¢; to x; (resp. ¢;42 to z;12), and which
are contained in one given connected component of CP!\ RP! (see Figure . The result follows
from the fact that the only special points in the boundary of C are x;, z;11 and x;1o.

Ci+2 Ci+1 G T Tit1 T2

Figure 5.4: The region C C CP!\ T together with its boundary.

O

Recall that )\; is positive if ¢ is odd and negative if ¢ is even, and thus the root z; of P; is a
zero (resp. pole) of ¢ if ¢ is odd (resp. even). Recall that the valency of any special point z; is the
number V; of edges of I' that are incident to x;.

Fori=1,...,n+1, denote by N; ;11 the number of edges of I' in CP!\RP? joining the special
points x; and z;,1. By Lemmata and we have Vi = Nio +2 and Vypo = Npy1ng2 + 2
(each number 2 corresponds to the pair of edges of ' in RP?! incident to 1 and x,,, 2 respectively).
Moreover, for i = 2,...,n+1, Proposition [5.§ and Lemma [5.10]show that V; = N;_1; + N; i1 +4,
where the number 4 counts the branches in RP! together with the branches joining z; to c;.
Knowing that V; = |2);|, it is straightforward to compute that for k =1,...,[n/2] + 1, we have

k k k
Z )\2‘7‘,1 < = Z)\Qj < Z)\2j+1 if n is even, or (523)
j=1 j=1 j=0

k k k
Z /\2]‘_1 < — Z )\Qj < Z )\2j+1 if n is odd. (524)
j=1 j=1 =0
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This finishes the proof of the ”only if part” of Theorem

We now finish the description of T'. For ¢ € {0,...,n+ 1}, consider the real branch Ly joining
two consecutive special points z; and x;41 of ¢. Let k := N; ;41/2, and for j = 1,...,k, consider
the couple of conjugate branches (L;, L;) joining x; to z;41 enumerated such that the open disc of
CP! with boundary (L;, L;) and containing Lo, contains the couple (L;_1, L;_1) as well (assuming
that Lo = Lg). The branch Ly, (resp. L) does not contain a letter r since there exists a cycle of
I'; containing both Ly (resp. L) and a letter r € A, and thus obeying the cycle rule. On the
other hand, the branch Lj_; (resp. Lj_1) contains a letter  where the cycle formed by the union
of Ly and Ly_1 (resp. L and fk_l) and containing x; and x;4; obeys the cycle rule. We deduce
that for j =0, ..., k, the branch L; (resp. fj) has exactly 1 or O letters r according as j and k—1
have the same parity or not (see Example .

In fact, this complete description of the dessin d’enfant I' can be used to prove the ”if” part of
Theorem with the same techniques as in [Bih07]. However, we choose in Section a different
method, namely Viro’s combinatorial patchworking, which shows clearly why the inequalities of
Theorem are necessary.

Remark 5.11. From the relations described above, we see that the collection of integers N; ;11
is determined by the collection of the coefficients A; (and vice-versa). Moreover, we see that the
inequalities of Theorem are equivalent to N; ;41 >0 fori=1,...,n+ 1.

Ty T X9 &3 X4
Il Il Il Il I
p r r r r p q p q

NS

Figure 5.5: The dessin d’enfant 'y for n = 3.

Example 5.12. Figure represents an example of I' where n = 3, \y =3, Ao = =7, A3 = 6,
A = =3 and \s = 1. The dessin d’enfant T' can be obtained from Ty (see Fz'gure by adding
complex branches connecting consecutive special points and letters r as described above.

Figure 5.6: An example of a dessin d’enfant T" for n = 3 that can be constructed from T'y.
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5.3 Proof of the “if’ direction of Theorem [5.1]

Assume that A\; > 0 if 4 is odd, A; < 0 if 4 is even and or is satisfied (depending on
the parity of n). In this section, we construct polynomials P; (see Section such that
has n + 1 solutions in A;. These polynomials have the form Pj(y) = t*y, Ppi2.(y) = 1 and
P (y) =1+t*y for i =2,...,n+ 1, where ¢ is a real positive parameter that will be taken small
enough, and each «; is a real number. The corresponding Gale polynomial is

[n/2] \ [(n+1)/2] N
Giy) =[] piivw— [ Pud” ). (5.3.1)
j=0 j=1

We are interested in the roots of G contained in A ;, which is the common positivity domain of
the polynomials P; ;. Note that here Ay ; =]0, +o0[. The polynomial G, is a particular case of a
Viro polynomial (c.f. [BBS06, Bih02) [Vir84])

d
T =3 6,07,

P=Ppo

where ¢ is a positive real number, and each coefficient ¢,(t) is a finite sum ) Gel, Cpqt? with
cp.q € R and ¢ a real number.

We now recall how one can recover in some cases the real roots of f; for ¢ small enough (see for
instance [BBS06]). Write f for the function of y and ¢ defined by f;. Let D C R? be the convex
hull of the points (p, ¢) for po < p < d and ¢q € I,. Assume that D has dimension 2. Its lower hull
L is the union of the edges eq,...,e; of D whose inner normals have positive second coordinate.
Let I; be the image of e; under the projection R? — R forgetting the last coordinate. Then the
intervals Iy, ..., I; subdivide the Newton segment [pg,d] of f;. Let f(*) be the facial subpolynomial
of f for the face e;. That is, the polynomial f(* is the sum of terms ¢p,qy? such that (p,q) € e;.
Suppose that e; is the graph of y + a;y + b; over I;. Expanding f;(yt~%)/t% in powers of ¢ gives

felyt™) /8% = fO(y) + gD (y,t) and i=1,...,1, (5.3.2)

where g (y,t) collects the terms whose powers of ¢ are positive. Then f(*)(y) has Newton segment
I; and its number of non-zero roots counted with multiplicities is |I;|, the length of the interval I;.

Lemma 5.13. Assume that fori=1,...,1, the polynomial f*) is a binomial. Then there exists
a bijection between the set of all non-degenerate positive roots of f; fort > 0 small enough and the
set of non-degenerate positive roots of fU ... fO.

Proof. Since f()(y) is a binomial, it has at most one positive root r which is simple, and there
will be a positive root r; ; of
FOy) + 99 (y. 1)

near such r for ¢ small enough. Let K C ]0, +oo[ denote a compact interval containing the positive
root of f() for i =1,...,1. Then, for t > 0 small enough, the interval K contains the positive root
7i4 of fi(yt=?)/t%. Moreover, the intervals t~ K, ...,t~% K are disjoint for ¢ > 0 small enough.
This gives [ positive roots of f; for ¢ > 0 small enough. Roots of f;(yt~%)/t’ which are close to a
point r are positive only if r is positive, and the number of these roots is determined by the first
term @ (y). Since f()(y) is a binomial, it has only one simple positive root. O



81 CHAPTER 5. CHARACTERIZATION OF CIRCUITS

To simplify the notations, set pg = 0, p1 = A1, p2 = —A2, P3 = A1 + Az, ... and ppy1 =
Z"/Q )\2]+1 if n is even and p,y; = Z("+1)/2
Po < p1 < -+ < Ppy1- Set hg =0 and choose real numbers hq,...,h,41 such that the lower part
L of the convex hull of {(p;,h;)| i = 0,...,n+ 1} consists of the segments [(pi, ki), (Pit1, Pit1)]
for i = 0,...,n. Therefore, projecting L to R via the map R? — R forgetting the last coordinate,
we get the subdivision of [0,p,+1] by the intervals [p;, p;+1] (see Figure . Set a1 = h1/p1,
g = hg/py and

Ag; if n is odd. Then by assumption, we have

h; — h;_
o= ——"2 for i=3,...,n+1.
Pi —Pi-2

Proposition 5.14. Fort > 0 small enough the polynomial (5.3.1)) has n+1 roots in Ay 4 =]0, +o0].
Proof. Tt is easy to see that the lower hull of the Viro polynomial

/2]
H Py (y) (5.3.3)

is composed of the segments [(p2j+1, h2j+1), (p2j+3, hojys)] for 5 =0,...,|n/2] — 1. Similarly, the

lower hull of
L[(n+1)/2]

- 11 P w (5.3.4)
j=1

is composed of the segments [(pa;—2, haj—2), (P2, ko)) for j =1,..., [(n+1)/2]. It follows that the
lower hull of the Viro polynomial Gy is L. Now we apply Lemma [5.13]to G;. For i = 0,...,n, the
facial subpolynomial G corresponding to the segment [(p;, hs), (Pit1,his1)] C L is a binomial
where one monomial comes from and the other comes from . Consequently, this
binomial has coefficients of different signs and thus it has one simple positive root. Therefore by
Lemma [5.13] the polynomial G; has n+1 non-degenerate positive roots for ¢ > 0 small enough. [J

Example 5.15. Choose fori=0,...,n, the slope of the segment [(p;, h;), (Pit1,hit1)] of L to be

equal toi. We compute explicitly the values aq, ..., ant1 of the exponent of t appearing respectively
in Pry,...,Pui1t. We have hy =0, and

_ hiz1 — hy

Pi+1 — Di

fori=0,...,n

Since oy =0 and fori=0,...,n—1, we have a;r2 = (hiy2 — h;)/(Pit2 — i), then

Qiyo =i+ Pi+2 — pz'+1.
Pi+2 — DPi

Note that piyo —p; = N if © is odd, and p;42 — p; = —\; if © is even. Moreover, we have

(i+1)/2 (i+1)/2 (i+2)/2 i/2
Pit2 — Pig1 = Z A2j41 + Z Ag; if i is odd and — Z Agj — Z)\Qj.l,_l if © is even.

§=0 j=1 =0
Therefore,
' ZI_?,—‘,—lJ/Q +ZLZ+2J/2
Qit2 =1+
Ai



5.3. Proof of the “if” direction of Theorem Iﬂl

82

po P P2 P3 P4 Ds

Figure 5.7: The lower hull L of G, for n = 4.



Chapter 6

Constructing polynomial systems
with many positive solutions

6.1 Statement of the main results

Consider a system defined on the field of real generalized locally convergent Puiseux series with
two equations in two variables supported on a set of five distinct points in Z2. We say that such
system is of type n = k = 2. Moreover, we assume that no three points of the support belong to a
line, and we say that such a system is highly non-degenerate.

6.1.1 For normalized systems

Given such a system, we prove in Section that one can associate to it a system

ao + Y1+ agy?ys? + ast®yPyy* = 0,

my ma ) Mo B,ma,na  _ (6'1.1)
bo+ 1"t + bayy Pyp” + baty MYyt = 0,

with equations in RK[yfl, yfl], that has the same number of positive non-degenerate solutions,

and satisfying that all a; and b; belong to RK" and verify ord(a;) = ord(b;) = 0, all m;,n; belong
to Z with mi,ne > 0, and both «, are real numbers. A highly non-degenerate system
satisfying the latter conditions is called a normalized system.

We prove in Section the following result.

Theorem 6.1. If (a, 3) # (0,0), then (6.1.1) has at most nine non-degenerate positive solutions.

In Subsection [6.5.2] we construct a system (6.1.1)) having seven non-degenerate positive solu-
tions, and thus proving the following.

Theorem 6.2. There exists a system (6.1.1) having seven non-degenerate positive solutions.
In the last two sections of this chapter, we refine Theorem by proving the following result.

Theorem 6.3. If « # § or a = < 0, then the sharp bound on the number of positive solutions

of (6.1.1) is siz.
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We prove in Section [6.6] Theorem [6.3| when coef(a;) = coef(b;) for i = 0,2, and in Section
we prove this result when

coef(ag) , coef(az)
coef(bg) " coef(bs)

af #0, and coef(a;) # coef(b;) for i=0,2.

In fact, due to Lemmata [6.30] and of Section [6.4] the conditions of Sections [6.6] and [6.7] are
complementary given that (a, 8) # (0,0).

Theorem was merely to give a direction to follow in order to construct a system
that has more than six non-degenerate positive solutions.

6.1.2 Transversal intersection points

Consider a (not necessarily normalized) system
fi=f2=0 (6.1.2)

of type n = k = 2, where f1, fo € RK[zfl,zzﬂ]. Assume that the tropical curves 77 and T3
associated to fi and f, intersect transversally. Let Wi, Wy C Z? denote the supports of f; and f,
respectively. Note that [W; UWs| = 5. Then by [Bih14] Theorem 1.1], the following result implies
that the number of intersection points of T} and T5 is at most six.

Lemma 6.4. The discrete mized volume (see (2.2.3)) in Subsection[2.2.5 of Chapter[d) D(Wr, Ws)

does not exceed six.

Proof. We distinguish the five possible cases [W) N Wy| =i for i = 1,...,5, and prove the result
for i = 3,4 since the case i = 5 is proven in [Bih14] and the other cases are similar. The discrete
mixed volume of Wy and W, is expressed as

DWWy, Wa) = Wy + Wa| — (Wi | — [Wa| + 1. (6.1.3)

Assume first that [W; N Ws| = 4. Then the cardinal of one of the two sets, say W, is equal to
four. Writing Wy = {wo, w1, wa, w3} and Wy = {wq, wy, wa, w3, wy }, we get

3
Wi +Ws = U{wi—i-wj |7=0,...,4, j > i},
i=0
and thus |Wy +Wh| < 14. Therefore, with [W;| = 4 and [Wh| = 5, we deduce that D(W;, Ws) < 6.
Assume now that [W; N W;,| = 3. We distinguish two cases

i) First case: [Wi| = 3 and |[Wa| = 5 (the case where [W;| = 5 and |[Ws| = 3 is symmetric).
Writing Wi = {wo, w1, wa} and Wa = {wo, w1, w2, w3, ws}, we get

2
Wi+ Wy = J{wi +w; [ j=0,....,4, j > i},
=0
and thus Wy + Wh| < 12. Therefore, with [Wy| = 3 and |Wa| = 5, we deduce that
D(Wi, W) < 5.
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ii) Second case: |W1| = ‘W2| = 4. Writing W; = {wo,wl,’LUQ,W3} and Wy = {wl,wg,wg,w4},
we get

3
Wi+ Wo = J{wi+w; [ j=1,....4, j > i},
=0

and thus W) + Ws| < 13. Therefore, with [Wy| = 4 and |Ws| = 4, we deduce that
D(Wi,Ws) < 6.

O

We prove that the bound in Lemma [6.4] is sharp and in fact can be realized by positive inter-
section points of two tropical curves.

Proposition 6.5. There exist two plane tropical curves Ty and Ty defined by equations containing
a total of five monomials and which have siz positive transversal intersection points.

An explicit system proving Proposition is given in Example m (see Subsection [6.4.1)).

6.2 Non-transversal intersection components of type (I)

Consider the polynomials

Fly):=> my" and g(y):=> wviy",
=0

=0

where f and g belong to RK[y{!, y5']. Let Ay and A, (vesp. 74 and 7,, Ty and T,) denote the
Newton polytopes (resp. dual subdivisions, tropical curves) associated to f and g respectively.
Consider the system

f=g=0, (6.2.1)

with total support not contained in any hyperplane of R? and satisfying that all solutions of
in (K*)? are non-degenerate.

If ¢ is an isolated point of Ty N T,, we have that z + coef(z) induces a bijection from the
set of non-degenerate solutions in (RKs()? of the system with valuation £ to the set of
non-degenerate positive solutions of the reduced system with respect to £ (see Proposition [2.23)).
When ¢ is not a point (i.e. an intersection of type (I)), some of the points in the relative interior
fo of £ are not valuations of solutions of in (K*)2. In fact, we are interested in positive
solutions of . Here, we give a way to compute

o

Val ({z € (RKx0)? | f(2) = g(z) = 0}) N €

and the coefficients of the first order terms of {z € (RKx)? | f(2) = g(z) = 0} with valuation in
fo (see Remark .

Assume that Ty and Tj; have a non-transversal intersection component £ of type (I) and that
fo contains the valuations of positive solutions of the latter system. Recall that {O is the relative
interior of the intersection of a face {; of Ty and a face {; of T, satisfying dim({y) = dim(&,) =
dim(&rNEy) = 1. Assume that each of A¢, NZ? and A¢, NZ? has only two points belonging to the

support of f and g respectively so that these points are endpoints of A¢, and A¢, respectively. In
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this section, we introduce a method for computing the valuations in 50 of non-degenerate positive

solutions of (6.2.1)).

N A

Figure 6.1: A monomial change of coordinates that acts on the type-(I) intersection cell.

Proposition 6.6. There exists a system

T S
ot eyt + Y cylyh =do+ iy + Y diyitys = (6.2.2)
1=2 =2

defined by polynomials in RK[ylil,ygil] which satisfies the following properties.

i) coef(cg) = coef(dy) = —1, coef(c;) = coef(d;) = 1, ord(cy) = ord(dg) = ord(c;) =
ord(di) = 0 and ki, my are positive integers. The tropical curves associated to (6.2.2)
intersect non-transversally at a cell € of type (I) contained in {0} x | — 00, 0] with endpoints
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v =(0,k) and vg = (0, ko), where

k = max{zy | 0 = max{val(c;) + Lz , val(d;) + nxe | i =2,...,7,i=2,...,8}}
and

ko = min{xs | 0 = max{val(¢;) + lLize , val(d;) + nyxe | i =2,...,7,i=2,...,s}}
(we may have kg = —oo when € is unbounded).

i1) The systems (6.2.1) and (6.2.2)) have the same number of non-degenerate solutions in (K*)2.
Moreover, they have the same number of non-degenerate positive solutions with valuations
in & and € respectively.

Proof. In what follows, we make transformations on to obtain the system so that
and have the same number of non-degenerate solutions in (K*)2. Moreover, the latter
transformation maps each non-degenerate positive solution of with valuation in 50 to a non-
degenerate positive solution of with valuations in € so that this mapping is a bijection.
The intersection component ¢ has a direction orthogonal to the edge A¢, € 74 dual to & and to
the edge A¢, € 7, dual to {,, thus both these segments are parallel. Enumerate the exponent
vectors v, ..., v, and wy,...,w, so that the equations defining the relative interiors of {; and ¢,
are expressed as

{z € R?| (x,v0) + val(po) = {w,v1) + val(p1) > miax((, v;) + val(p1:))}

and
{z € R?| (x,wp) + val(vy) = (x,w;) + val(vy) > I?:Sa;((@, w;) + val(v;))}

respectively, and so that A(vi —wg) = (w1 — wp) for some A € R%. The endpoints of A, and
Ag, are vg,v1 and wo, w; respectively. Moreover, one can assume that vg = wo = (0,0). Doing a
monomial change of coordinates if necessary, we may assume that both these edges are horizontal
(zero second coordinate), and v1 = (0, k1) and w; = (0, m,) for some positive integers k; and m;.
Set coef (119) = coef(vp) = —1 by dividing the first (resp. second) equation of by — coef (uo)
(resp. — coef(1p)). Since ¢ contains valuations of positive solutions of (6:2.1), the reduced system

— 1+ coef (u1)y™ = =1 + coef (vy)y™ =0 (6.2.3)

(o) ()
= coef(j11) ~ \ coef(1) '

Set coef(u1) = coef(r1) = 1 by replacing y; by (1/ coef(p1)) /%)y, in (6.2-1). Without loss of
generality, we may assume that ord(ug) = ord(vp) = 0. Denote v; = (k;, ;) and w; = (m;, n;)
for i = 2,...,rand i = 1,...,s. Since v9 = wy = (0,0), a point (z1,72) € R? belonging
to € satisfies 0 = kyzy + val(pr) > max{k;x1 + Lixzo + val(y;),t = 2,...,r} and 0 = myzy +
val(v1) > max{m;x; + n;xo + val(y;), ¢ = 2,...,s}, and thus val(uq)/k1 = val(v1)/my. Set
val(py) = val(vy) = 0 by replacing y; by tv21(#1)/k1g)) in . The cell £ is now contained in
the second-coordinate axis of R?. Recall that ¢ is either a segment or of a half-line. Replacing

has a positive solution
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by t7ys in for some real number v translates Ty U T, vertically, and y» by y, = acts as a
symmetry on Ty UT, with respect to the first-coordinate axis of R?. We use these transformations
so that the resulting fo is situated entirely below the first-coordinate axis of R?. Therefore, an
endpoint v of € is a point (0, z2) € R? satisfying 0 = kyz1 > max{val(y;) + liz2, i =2,...,r} and
0 = myzy > max{val(v;) + n;xs, i = 2,...,s}, and thus if v is the closest endpoint of ¢ to the
origin of R?, then the second coordinate x of v is equal to

max{zs | 0 = max{val(p;) + lLixze , val(v;) +nx2 | i=2,...,7,i=2,...,5}}.
Similarly, we show that the second coordinate rg of vy (kg = —oc if & is unbounded) is equal to

min{zs | 0 = max{val(p;) + lLixe , val(v;) +nx2 |i=2,...,7,i=2,...,5}}.

Remark 6.7. We have the following:

a) Since the transformations from (6.2.1)) to are a series of change of coordinates, con-

dition 13) of Proposztwn - gives a bzyectzon between the set of non-degenerate posztwe

solutions of (6.2.1)) with valuation in f, and the set of such solutions with valuations in ¢.

b) If (o, 8) € (K*)? is a non-degenerate solution of with Val(a, B) in &, then condi-
tion i) of Proposition implies that coef(a) = 1 and ord(a) = 0. Thus, to determine
Val(a, 8) and Coef(a, 8), it remains to determine val(8) and coef(B). This is the purpose
of Proposition [6.8

Thanks to Proposition we are interested in non-degenerate positive solutions of (6.2.2)) with

valuation in & C {0} x | =00, 0[. We also assume that (6.2.2) satisfies property i) of Proposition
Consider the polynomial

A(y)/kr — B(y)/ma (6.2.4)
with
A(y) _ coef(co + Cl)tord(co+c1) + Zcoef(ci)tord(m)yli
=2
and

B(y) = coef(dg + dl)tord(dO‘i‘dl) + Z Coef(di)tord(di)y"’i,

=2

Proposition 6.8. If (o, 3) € (RK*)?2 is a non-degenerate solution of (6.2.2) such that ord(a) =0
and coef(a)) = 1, then there exists a non-degenerate root v € RK* of (6.2.4) such that ord(y) =
ord(B) and coef(y) = coef(5).

Proof. Assume that (o, 8) € (RK*)? is a non-degenerate solution of (6.2.2)) such that ord(a) = 0
and coef(a) = 1. Then o = 1+ § with § € RK and ord(d) > 0. Replacing y; by 1+ = and ys by
y, the system (6.2.2) becomes
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where

k‘l I
k ) .
P(z,y) =co+ a1 +Z<)“’ +Y c(l+a)tyh

i=1

and

Q(xy)—do+d1+2d1< >J; +Zd (1+z)™ y™.

j=1

Set a; = ¢; fori =2,...,r and a1 = ¢p+ ¢1. Similarly, set b; = d; fori =2,...,s and by = dy+ d;.
Then (6.2.5)) becomes

k1
k . r )
201<z‘1>‘”1 toa A+ Yyl =0,

=1 (6.2.6)
my ml )

Sou(")e + o+ Sanea

=1

From ord(d) > 0, we deduce that
a+ Y ai(1+0)" B and by + Zb 1+ 6)™ gn

have the same order as
T S

A(B) = Zcoef(ai)tord(ai)ﬁl"’ and B(8 Zcoef tord(b 8"
i=1

i=1

respectively, where [y = n; = 0.
Consider the two polynomials g, h in RK[z] defined by g(z) = ki(c1 — 1)z + Zz 201( at
and h(z) = m(dy — Da + 31" di ()2 so that

k1
k )
ch(;>x =kiz+g(z) and Zdl( . )ml:mlx—i—h(x).

i=1

Set ord(8) = Bo. Then M = min{l;5y + ord(a;), ¢ = 1,...,r} is the order of A(S). Similarly,
N = min{fon; + ord(b;), ¢ = 1,...,s} is the order of B(). Denote by I (resp. J) the set
{i €[r]| liBo+ord(a;) = M} (resp. {i € [s] | n;Bo + ord(b;) = N}).

Plugging (tord(‘s)x,tﬁoy) in , and dividing its first and second equation by kit and
mit? respectively will not change the number of its solutions in RK x RK*. Expanding both
polynomials of in terms of x and y gives

O My g =M@z k4 Y, coef(ai/ka)yt + Glz,y) =0,
(6.2.7)
1O Ny 4 g NRE O ) Sy 3, coef(bi/m)y™ + H(w,y) =0,

where all the coefficients of the polynomials G and H of RK[z*!, y*!] have positive orders. Note
that the polynomials g and h have coefficients with non-negative orders. Indeed, since ord(c;) =
ord(dy) = 0 and coef(cy) = coef(d;) = 1, we have ord(¢; — 1) > 0 and ord(d; — 1) > 0.
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Doing slight perturbations on the coefficients of , we may assume without loss of gener-
ality that the polynomial has only non-degenerate roots in RK*, and that for any I C [r],
J C [s] the polynomials },_; coef(a;)y"* and }_,_ ; coef(b;)y™ don’t have a non-zero common root.
Such perturbations do not change the number of non-degenerate solutions of in RK x RK*
nor do they change the number of non-degenerate roots of in RK*. We have that at least
one of ord(d) — M and ord(d) — N is equal to zero and none of them can be negative.

Indeed, assume first that both of them are positive. Note that from ord(d) > 0, we have
min(ord(g(d)), ord(h(d))) > ord(d) if § # 0. Moreover, since (d, 3) € RK x RK" is a non-degenerate
solution of , for t > 0 small enough, we have that coef(3) is a real non-degenerate solution
of

Zcoef(ai/kl)yli = Zcoef(bi/ml)y"i =0,

icl icJ

a contradiction. Assume now that we have for example ord(d)—M is negative. Divide the first equa-
tion of by t°*4()=M Then we get terms ¢~ °*4(®) g(¢ord(®) ) /k,  ¢M —0rd(9) Sier coef(a; /Ky )yt
and tM~ord0)G(z,y) which tend to zero when t — 0. This proves that coef(§) = 0, which means
that § = 0. It follows that coef(8) is a non-degenerate real solution of

ZCOGf(ai/kl)yli - Zcoef(bz‘/m1)ym -0,

el ieJ

a contradiction.
We conclude that ¢ is non-zero and we study two cases.

i) First case: M = N = ord(§). Since (§,3) € (RK")? is a solution of (6.2.6]), taking t > 0
small enough, we get that (coef(d), coef(8)) is a real solution of

x4+ Z coef(a; /K1)yl = = + Z coef(b;/my)y™ = 0. (6.2.8)
iel icJ

Taking the difference of the two non-zero polynomials appearing in (6.2.8)), we deduce that
coef(f) is a real root of

Z coef(a;/k)y' — Z coef(b; /mq)y™.

i€l ieJ

On the other hand, we have

A(tﬁoy)/(k,ltord(é)) _ Z coef(ai/kl)yli + Z Coef(ai/kl)tﬁolri-ord(ai)—ord(é)yl,-
il il

and

B(tﬁoy)/(mltord(é)) _ Z coef(bi/ml)y"f’ + Z Coef(bi/ml)tﬁoni-&-ord(bi)—ord(é)ym_
i€ igJ

Consequently, A(t%oy)/(k1t°" ) — B(t%0y)/(m1t°"(®)) has a root p € RK* with ord(p) = 0
and p(0) = coef(3), and thus, v = t%p is a root of (6.2.4).
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ii) Second case: ord(d) = N > M (the case where ord(d) = M > N is symmetric). Similarly,
since (6,3) € (RK*)? is a solution of ([6.2.6), when ¢ > 0 is small enough, we have that
(coef(d), coef(B)) is a real solution of

Z coef (a;/k1)yl =z + Z coef (b; /mq)y"™ = 0. (6.2.9)

i€l ic€J

On the other hand, all coefficients of t =™ B(t%0y) have positive order. Indeed, since M < N,
we have ord(b;) + n;80 — M > 0 for i = 1,...,s. Consequently,

> " coef(a;/ky)y" + Y coef(a;/ky )P0l Ford(@) =Myl — =M B(thoy) im,
il il

has a root p € RK* with ord(p) = 0 and p(0) = coef(3). Therefore, v = t7p is a root
of (6.2.4).

O

Similarly to the one that appeared in Chapter [ the polynomial f; defined by the equation
in is a particular case of a Viro polynomial (c.f. [BBS06| [Bih02] [Vir84]). We recall now the
description for f; that was made in Section [5.3] of Chapter [f]

Write fi(y) = Z;}:po ¢p(t)yP, where ¢ is a positive real number, and each coefficient ¢, (¢) is
a finite sum 7 o cpq
defined by f;. Let D C R? be the convex hull of the points (p, q) for py < p < d and g € I,,. Assume
that D has dimension 2. Its lower hull I" is the union of the edges ej,...,e; of D whose inner
normals have positive second coordinate. Let I; be the image of e; under the projection R? — R
forgetting the last coordinate. Then the intervals Iy,. .., I; subdivide the Newton segment [py, d]
of fi. Let f(® be the facial subpolynomial of f for the face e;. That is, f*) is the sum of terms
¢p.qy? such that (p,q) € e;. Suppose that e; is the graph of y — A\;y + p; over I;,. Expanding
fe(yt=>) /tHi in powers of ¢ gives

t? with ¢, , € R and ¢ a real number. Write f for the function of y and ¢

Flyt™) /4 = FO(y) + gt (y) and i=1,....1, (6.2.10)

where gt(i) € RK[y] collects the terms whose powers of ¢ are positive. Then f(*)(y) has Newton
segment I; and its number of non-degenerate non-zero roots in K counted with multiplicities is
|7;], the integer length of the interval I;.

Definition 6.9. An element yo in K* is largely ordered with respect to
d .
ft = Zp:po ¢p(t)yp pr : Ord(yo) + 0rd(¢?(t)> > 0 fOTp = p07 e 7d'

Recall that we are interested in the number of non-degenerate positive solutions («, ) €
(RK*)? of such that Val(a, ) € ¢ = 1(0, o), (0, 5)[. By Proposition this number is
bounded by the number of non-degenerate positive roots «y of the polynomial f; appearing in
which satisty val(y) € ]ko, K[

Lemma 6.10. If Val(a, 8) € ¢ for some (a, B) € (RK*)2, then j is largely ordered with respect
to ft'
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Proof. Recall that f; is defined by (6.2.4). Assume that Val(a, ) € ¢ for some (a, 8) € (RK*)2.
Then since € C {0} x R, we have val(a) = 0. Moreover, val(3) satisfies 0 > max]_,{val(¢;) +
l;val(f)} and 0 > max]_,{val(d;) + n, val(8)}. Indeed, from condition i) of Proposition we
have that Val(a, 8) belongs to the relative interior of the duals of [0, k1] and [0,m4]. Therefore,
B is largely ordered from val(c;) + {; val(8) = —ord(¢;) — l;ord(8) and val(d;) + n; val(f8) =
—ord(d;) — njord(B). O

Doing perturbations on the coefficients appearing in the polynomials f(*), we may assume that
for i = 1,...,1, the roots of f() are non-degenerate. Recall equation (6.2.10)) relating f; to the
facial subpolynomials f;.

Lemma 6.11. If v is largely ordered with respect to fi and a non-degenerate non-zero root of f,
then there exists i € [I] such that coef(7) is a non-degenerate non-zero root of £, val(y) = \; and
i > 0. This induces a bijection between the set of largely ordered non-degenerate non-zero roots ~y
of fi and the set of non-degenerate non-zero roots of the polynomials f9 such that y; > 0.

Proof. Assume that v is a largely ordered non-degenerate root of f; with ord(y) = 8y and coef(y) =
po # 0. Write f;(t%0y) as
fet™y) = (r(y) + 5:(y)) (6.2.11)

for some § € R, r € R[y] and s; € RK]y], where all exponents of ¢ in s;(y) are positive. Then
the Newton polytope of t97(y) is a face of the Newton polytope of f;(t%y). Since v is a non-zero
root of f; with ord(y) = By, the polynomial f;(t?y) has a non-zero root 3 with ord(yg) = 0. It
follows that pg = coef(yo) is a non-zero root of r(y), and thus r(y) has at least two terms (its
Newton polytope is a segment). The Newton polytope of f;(t%y) is obtained from that of f;(y)
by a linear map (a,b) — (a,b+ Boa). Note that such linear map (independent of 8y € R) maps a
lower face to a lower face. Comparing with , we obtain that there exists i € [I] such that
r=f0, s=g¢® By=-\ and § = p;. Therefore, when ¢ > 0 is small enough, t*:~ is close to a
non-degenerate root of f()(y). Let M be the minimum of the quantities p ord(t%y) + ord(¢,(t)),
p=0,...,d. Then M > 0 since v is largely ordered. Now f;(t%y) = ZZ:po ¢p(t)tPPoyP with
ord(¢,(t)tPP%) > M and there is at least one equality. Comparing with (6.2.1T), we get M = §
and thus u; = M > 0.

Assume that pg is a non-degenerate non-zero root of f() and y; is positive. Then will
have a root p € RK* with ord(p) = 0 and p(0) = po for ¢t > 0 small enough. Therefore, v =t~ ip
is a non-degenerate root of f;. Finally, v is largely ordered since p; > 0. O

If (e, 8) is a solution of such that Val(a, 8) € 53, then @ = 1 + z with ord(z) > 0.
Plugging (1+z, 8) in , gives a polynomial system in (z, 8) which does not depend on coef(cy),
coef(cy), coef(dp) or coef(dy). This follows from coef(co) = coef(dy) = —1, coef(c1) = coef(dy) =1,
ord(co) = ord(dp) = ord(c;) = ord(d;) = 0 (see Proposition [6.6). Therefore, perturbing slightly
C2,...,Cp, da,...,ds and the non-constant terms of cq, dg, ¢1, di, we may assume without loss of
generality that if (o, 8) and (o/, 8’) are two different solutions of with valuations in &, then
coef(B) # coef(B"). Obviously, such a perturbation does not change the number of non-degenerate
positive solutions of . It follows from Propositionthat the set of positive solutions (a, )

of (6.2.2)) with Val(a, 5) € ¢ is mapped injectively to the set of positive roots v of (6.2.4]). Set

7= {y S ]R>O | di e [l] 3 fl(y) =0, N\ 6]/430,/43[, i > 0}

We have the following Corollary.
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Corollary 6.12. If (o, 8) € (RKsq)? is a non-degenerate solution of such that Val(a, 8) €
Qof, then coef(a) =1, ord(a) = 0 and for some i € [I], we have f;(coef(B)) =0 and ord(5) = —\;.
This induces an injection (z1,29) — coef(z2) from the set of non-degenerate positive solutions
of with valuation in €, onto the set T.

Proof. Tt is clear from before that if has a solution (o, 8) € (RK*)? with valuation in &,
then coef(a) = 1 and ord(a) =0

Proposition [6.§ - and Lemma show that the set of non-degenerate solutions («,3) €
(RK+¢)? of - ) such that Val(« 5) € ¢is mapped injectively onto the set of non-degenerate
roots 7y of f; that are largely ordered with respect to f; and that satisfy ord(y) = ord(8) € |-k, —ko|
and coef(y) = coef (). Moreover, Lemma[6.11]shows that the set of such roots v is in bijection with
the set of positive non-degenerate non-zero roots pg of the polynomials f(*) such that \; = — ord(7y),
coef(y) = po and p; > 0. O

Definition 6.13. We say that the polynomial f; in (6.2.4) is an approximation polynomial

of (1) for ¢

Now, to sum up this Section. One can approximate comblnatorlcally all non-degenerate positive
solutions of ({ with valuation contained in the relative interior 5 of a cell £ of type (I) by
computing thelr ﬁrst order terms. In order to achieve that, Proposition shows that it suffices
to determine the first-order terms of the non-degenerate solutions (a, 8) € (RKx)? of (6.2.2) with
valuation in & (see Figure . The first-order term of « is 1 -t°, and by Corollary [6.12) there
exists ¢ € [I] such that f;(8) =0, ord(5) = —\; and p; > 0. The numbers \; and p; are determined
from the lower hull of D (the Newton polytope of g(y,t) := fi(y)).

1
1
1

"

I;

Figure 6.2: Lower part of D associated to f;: here, \; < 0 and p; > 0

6.3 Base fans and tropical intersections

In this section, we consider a system defined on the field of real generalized locally convergent
Puiseux series with two equations in two variables supported on a set of five distinct points in Z2.
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We say that such system is of type n = k = 2. Moreover, we assume that no three points of the
support belong to a line. We say that such a system is highly non-degenerate.

Lemma 6.14. Given any system of polynomials in RK[z] +1 22 ] of type n = k = 2, one can
associate to it a system

apz" + a12"" + as2"? + azt®z"? 0,

6.3.1
bozwo + blzwl + b22w2 + b4tﬂz“’4 = 0, ( )

with equations in RK[zEY, 2], that has the same number of positive non-degenerate solutions,
where all a; and b; are in € RK™ and verify ord(a;) = ord(b;) =0, all w; are in Z* and both «, [
are real numbers.

Proof. Using linear combinations, any system of type n = k = 2 can be reduced to a system

Cot™ 2P0 4 eyt 2P 4 cpt®2 22 gt = (),
_ _ _ _ (6.3.2)
dotﬂozwo =+ dltﬁl 201 4 dZtﬂzzwz 4 d4t54zw4 = 0

that has the same number of positive non-degenerate solutions, where all ¢; and d; are in € RK"
and verify ord(c;) = ord(d;) = 0, all 1; are in Z? and all exponents of ¢ are real numbers. Assume
first that a; — ayq # B; — B1 for i = 0,2. By symmetry, the different possibilities of inequalities can
be reduced to only two cases.

e First case: ag — a1 < By — 1 and ag — g < B2 — 1.
Since we are interested in non-degenerate positive solutions, we may suppose that wy = (0, 0).

The system
(co/er)te0™ @z 00 4 o1 4 (g /e )t¥2 7% P2 4 (cg/cq )tO3 ™ 203 = 0,
N (6.3.3)
éotao_alzwo + 52ta2_a12§w2 (C?,/Cl)toé‘3 a1 w3 - (d4/d1)t54 B w4 = 0

has the same number of non-degenerate positive solutions as . Indeed, the first equa-
tion of @ is obtained by dividing the first equation of (6 - by c1t*!, whereas the second
equation of @ is obtained by dividing the first equation of (6 - by c1t** and subtract-
ing from it the second equation of (6.3.2) divided by d;¢”. Note that coef(¢;) = coef(c;/c1)
and ord(¢;) = 0 for i = 0,2. We divide both equations of by t*~%1 and set ws = w1,
wo = 3, wy = W9 and w; = 1w; for i = 0,4. Finally replacing (z1,22) by (t*21,t'23) in
for some real numbers k and [ satisfying ((k,[), ws) = oo — a3 and ((k,{),w1) = ag — as
does not change the number of positive non-degenerate solutions of . This gives a sys-
tem of the form with the same number of non-degenerate positive solutions as .

e Second case: ag —ay < By — B1 and as — ay > Py — [i.
Note that this case gives ag — ag > 2 — fg. Since we are interested in non-degenerate
positive solutions, we may suppose that wy = (0,0). The system

(dl/do)tﬁlfﬁozﬁll + (dz/do)tﬁb*ﬁozﬁ& + (d4/d0)tﬁ4*ﬁozﬂ74 4 zWo = 0,
- ~ - _ B : (6.3.4)
dltﬁl—ﬁozwl + thﬂ’z—ﬂozwz _ (CS/CO)tas—(onwB 4 (d4/d0)t64_602w4 = 0
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has the same number of non-degenerate positive solutions as . Indeed, the first equa-
tion of is obtained by dividing the second equation of by dot?°, whereas
the second equation of is obtained by dividing the second equation of by
dot?0 and subtracting from it the first equation of divided by cot®. Note that
coef(d;) = coef(d;/dy) and ord(d;) = 0 for i = 1,2. We divide both equations of
by t%4=F and set wy = w4, wy = Wy and w; = W; for i = 1,2, 3. Finally replacing (z1, 22)
by (tFz1,t'2) in for some real numbers k and [ satisfying ((k,l),w1) = B4 — (1
and ((k,1), ws) = B4 — B2 does not change the number of positive non-degenerate solutions
of . This gives a system of the form with the same number of non-degenerate

positive solutions as (6.3.2]).

Assume now that we have a; — oy = [8; — B1 for either ¢ = 0 or i = 2. The case where we
have equality for both ¢ = 0 and 7 = 2 is trivial. Without loss of generality, we may suppose that
apg —ay = fo— 1 and as — a; < B2 — B1. Note that this case gives By — 2 < ay — as. Since we
are interested in non-degenerate positive solutions, we may suppose that wg = (0,0). The system

(do/dg)tﬁ07622m0 + (dl/dQ)t51*ﬁ2Zi)1 4oy g (d4/d2)tﬁ4*522ﬁ14 = 0,
~ (6.3.5)
dot’BO B2 2o + d t51 B2 LW _ (03/02)75()’3 Qo W3 + (d4/d2)t’84 2,01 —

has the same number of non-degenerate positive solutions of - Indeed, the first equation
of (| is obtalned by dividing the second equation of (6.3.2]) by dot®, whereas the second
equatlon of (6.3.5)) is obtained by dividing the second equation of (6.3.2) by dat”? and subtracting
from it the ﬁrst equation of divided by ¢pt®>. Note that coef(d;) = coef(d;/ds) and
ord(d;) = 0 for i = 0,1. We divide both equations of by t%0=52 and set wy = Wy, wy = Wy
and w; = w; for i = 0,1,3. Finally replacing (21, 22) by (t*21,t'25) in for some real numbers
k and [ satisfying ((k,1),w1) = B1 — Bo and {((k,1),ws2) = B4 — By does not change the number of
positive non-degenerate solutions of - This glves a system of the form with the same
number of non-degenerate positive solutions as . O

Consider a system satisfying all the hypotheses of Lemma Since we are interested
in its non-degenerate positive solutions, we may assume that wy = (0,0). Moreover, without
loss of generality, we may assume that a; = b; = 1. For the simplicity of further computations,
we make the following change of coordlnates Let m; be the greatest common divisor of the
coordinates of wy. Setting y; = 2™ and choosing any basis of Z2 with first vector % w3, we
get a monomial change of coordmates (21,22) = (y1,92) of (RK")? such that z** = y"* and

z"2 = y"y5?. Replacing yo by y2 Lif necessary, we assume that ny > 0. Indeed, no # 0, since by
assumption the support of (6.3.1)) is highly non-degenerate. With respect to these new coordinates,

the system ([6.3.1)) becomes the following normalized system (see Section for the definition).

ap + Y1t + a2y ys? + ast®y Py = 0,
bo Hy o+ boyy® + bat M yst = 0.

Note that and ) have the same number of positive solutions. Later, we denote by w;
the vector (m;,n;) in .
Let T (resp. Aj, 71) denote the tropical hypersurface (resp. the Newton polytope, the dual
subdivision of the Newton polytope) associated to the polynomial in the first equation of .
Recall From Chapter {4| that a normal fan of a 2-dimensional convex polytope in R? is the
complete fan with apex at the origin, and 1-dimensional cones directed by the outward normal

(6.3.6)
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vectors of the 1-faces of this polytope. Recall that wg, wi and ws do not belong to a line and
denote by A the triangle with vertices wg, w; and wy. Let & C R? denote the normal fan of A.
The triangle A together with £ are represented in Figure [6.3] on the left. The 1-dimensional cones
of £ are LO = {)\(O, 7m1)| A Z O}, L1 = {)\(ng,ml — m2)| A Z O} and L2 = {A(*ﬂQ,mQ)l A Z 0}
Let Cy (resp. Ci, C2) denote the 2-dimensional cone generated by the two vectors (0, —mq) and
(—=n2,mz) (resp. (0,—my) and (no,mq — m2), (n2,m1 — ms) and (—n2, my)), see Figure [6.3] In
what follows, for ¢ = 0,1, 2, let &Z denote the relative interior of C; and I: denote the relative
interior of L;. The main result of this Section is the following one.

Theorem 6.15. For ¢ = 0,1,2, the set &1 cannot contain more than one tropical transversal
intersection point of . Moreover, a 1-cone of £ does not contain a transversal intersection
point of Ty and Ty. Finally, if T1 and Ty intersect non-transversally at a cell &, then & is contained
in a 1-cone of the base fan £.

The proof of the first statement of this result is Corollary [6.23] and the proof of its second
statement is Corollary [6.25] The last statement of Theorem [6.15] is proved by Lemma [6.26]

Ly
Lo

w2

K]
LN TS

Figure 6.3: To the left: the base fan £. To the right: a generic base fan.

Remark 6.16. The I-skeleton of the fan & is the tropical curve associated to doy™° +di1y™* +day™?,
for any do,dy,dy € K with zero valuation.

Definition 6.17. Let C C R? be a fan with 1-cones Jo, J1,...,Jn and T C R? be a tropical curve.
We say that C is a base fan of T if for every vertex v of T, there exists a 1-cone J; of C and a
1-face F of T adjacent to v such that F C J;.

It is easy to check that if T" has a base fan C, then all of its vertices are located either on the
1-cones, or on the origin of C (see Figure on the right for example). For obvious reasons, all
results in this section on 77 hold also true for the tropical curve T5 associated to the polynomial
appearing in the second equation of . Therefore, we state them only for 7.

Lemma 6.18. The fan £ is a base fan of Ty.

Proof. If @ = 0, then the result is immediate since the only vertex of 77 is the center (0,0)
of £. Assume that a # 0. Then, since is highly non-degenerate, the subdivision 7 is a
triangulation such that any triangle of 71 has at least two vertices in {wg, w1, w2 }. Assume without
loss of generality that one such triangle is [wg, w1, ws]. Therefore the edge Fp 1 dual to [wg,w:] is
adjacent to the vertex vy of T1, dual to [wp, w1, ws] C 7. Note that

Fox = {o € B?| (2, wo) = {2, w1} > max((z, wa), (&,ws) — @)}, (6.3.7)
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It is clear that Fp ; is contained in the line which contains the 1-cone Ly. We prove that Fy 1 C Lg
(see Fig. [6.4]).

CQ wa

w3

CU U1 C1

wo w1

Fo
Figure 6.4: The edge Fp 1 is contained in L.

Assume that Fp 1 does not belong to Ly, we prove that this gives a contradiction. Consider a

point p € Fy 1 \ L. Therefore p is in &2. By Remark we have (p, ws) > max{(p,w1), (p, wo)}
which is a contradiction to (6.3.7)). O

Corollary 6.19. Any vertex v # (0,0) of Ty contained in L; for some i € {0,1,2}, is 3-valent.
Moreover, each 2-cone of £ adjacent to L; contains one edge of T adjacent to v.

Proof. Note that if T} has a vertex v # (0,0), then a # 0, and thus the 3-valency comes from the
fact that 7 is a triangulation. Since £ is a base fan of 77, the second part of the corollary is a
consequence of the balancing condition applied to v. O

Lemma 6.20. Assume that T1 has two vertices v;,v; # (0,0) contained in distinct 1-cones L; and
L; of &, respectively. Then there exists an edge of 11 that is adjacent to both v; and v;.

Proof. Since both v; and v; are 3-valent vertices of T} (Corollary , their respective dual faces
o; and o; are both triangles. The subdivision 7; cannot have more than three triangles since the
support of the first equation of has only four elements. Moreover, since A is convex, any
two triangles of 71 have one edge in common. Let d; ; denote the common edge of o; and o;. We
have that the vertices v; and v; are joined by an edge of 71, dual to d; ;. O

Lemma 6.21. 77 cannot have more than one vertex on any 1-cone of £.

Proof. Consider a vertex v # (0,0) of 77 that belong to a 1-cone, say Ly. By Lemma [6.18] the
vertex v is an endpoint of an edge Fy 1 C Lo of T7. Consequently

v e {x € R?| (z,wo) = (x,w1) > max({z,ws) — a, (x,w2))}.

Note that for any z in Lo, we have (x,wq) > {(x,ws). Moreover, by Corollary v is 3-valent,
thus v is the unique point point x € R? such that (z,wg) = (z,w1) = (v, w3) — a > (@, ws). O

Lemma 6.22. Fori=0,1,2, the set &i cannot contain more than one edge of T;.

Proof. This is a consequence of Corollary Lemma [6.20| and Lemma [6.21 O
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Since Lemma [6.22] also applies on T, we have the following result.
Corollary 6.23. A 2-cone of £ contains at most one transversal intersection of Ty and Ts.

This proves the first statement of Theorem To prove its second statement, we need the
following Lemma.

Lemma 6.24. If there exists an edge F of T1 not contained in any 1-cone of € and intersecting
one of these 1-cones in a point v, then v is an endpoint of F.

Proof. Assume without loss of generality that F'NLg # () and consider a point v € F N Lg. Since
F' is not contained in any 1-cone of &£, the relative interior of F' is expressed as

{z e R? | (z,w;) = (z,w3) — a > max ((z, w;), (z,ws))},
for distinct ¢, j, k € {0,1,2}. Moreover, since v € Ly, we have
v e {zeR? | (v,wp) = (v,wn)},

which means that v is not contained in the relative interior of F', and thus it is an endpoint of
F. O

Corollary 6.25. A I-cone of € does not contain a transversal intersection point of Ty and Ts.

Proof. A transversal intersection point p of T7 and T3 is the intersection of the relative interior of
an edge F; C T; and the relative interior of an edge Fy» C Tb. Lemma shows that if there
exists a point of Ly belonging to the relative interiors of both F} and F5, then both F; and F5 are
contained in Ly, which is impossible if the intersection is transversal. O

This finishes the proof of the second statement of Theorem [6.15} The following result finishes
the proof of Theorem [6.15
Recall that (6.4.1) is highly non-degenerate.

Lemma 6.26. If T and Ts intersect non-transversally at a cell £, then £ is contained in a 1-cone
of the base fan E.

Proof. Assume that 77 and 75 intersect non-transversally at a cell £ belonging to the relative
interior of a 2-cone of &, say of Cy, we prove that this gives a contradiction. We have that £ is
of type (I). Indeed, since £ is a base fan of T and of T5, all vertices of the the latter tropical
curves belong to the 1-cones of £, and thus ¢ cannot be of type (II), nor can it be of type (III).
Therefore, £ (which is of type (I)) is the intersection of the 1-dimensional cell Fy 3 C T3, dual
to [(0,0), (mg,n3)] and the 1-dimensional cell Fy 4 C T5, dual to [(0,0), (m4,nq)]. It follows that
the points (0,0), (ms,n3) and (mg4,n4) belong to the same line, and thus is not highly
non-degenerate, a contradiction. O

Recall that we have a; = b; = 1.

Proposition 6.27. Assume that Ty and T intersect transversally at a point v € &7,1 €{0,1,2}.
Then coef(a;) coef(ag) < 0, coef(b;)coef(bs) < 0 iff v is the valuation of a positive solution

of (533,
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The proof of Proposition [6.27] follows from the next two Lemmas.

Cy
w9

A ’ )

wo wo wy

wo w9

w3

N

wo wy wo w1

wWa w2

w,

V

wa

wo

wo

%

Figure 6.5: Disposition of T} with respect to its base fan £ (together with its dual trian-
gulation 7).

Lemma 6.28. Letv € (OZI denote a transversal intersection point of Ty and Ts. Then

<v7wi> = <U7w3> —a= <va4> - ﬂ > max((v,wj>, <vvwk>},
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satisfying that w;, w; and wy, are distinct points of {wo, w1, wa}.

Proof. Assume without loss of generality that v € (OZO, then (v, wp) > max((v,w), (v,ws)). The
proof comes directly from the fact that v belongs to the relative interior of an edge Fy (resp.
Fy) of Ty (resp. T3) defined by {z € R?| (v,wo) = (z,w3) — a > max({x,w) , (x,ws)}
(resp. {x € R?| (z,wo) = (x,ws) — B > max({x,w), (m,wg)}) . O

Lemma 6.29. Assume that Ty and Ty intersect transversally at v € (022-72’ € {0,1,2}. Then the
reduced system of (6.3.6]) with respect to v is

coef(a;)y™" 4 coef(as)y™® = coef(b;)y™* + coef(by)y™* =0

Proof. Assume without loss of generality that v := (vy,v3) € Co. Therefore, replacing (y1,y2) by

(t_vlylat_UQyZ) in " we obtain

aot—(%wo)ywo —l—ﬁ_(U’wl)ywl +a2t_<v’w2>yw2 +a3t(¥—<%w3)yw3

bot7<v,w0>ywo + t7<v,w1>yw1 + thf(v,u&)ng + b4tﬁ7<v,w4>yw4 _ (638)
Using Lemma [6.28] the latter system can be expressed as
t7<v,w0) (aoywo +t<v,wo>7<v,w1>yw1 +a2t<v,wo>f(v,wg>yw2 +a3yw3) = 0,
(6.3.9)
t7<v,w0> (boywo +t<v’w0>7<v’w1>ywl + b2t<v,w0>7<v,w2>yw2 +b4yw4) = 0

where each of (v, wo) — (v, w1) and (v, wy) — (v, ws) are positive. Therefore, for ¢ > 0 small enough,

the system ([6.3.9) becomes
coef(ap)y"® + coef(az)y™® = coef(by)y™® + coef(by)y"* = 0.

6.4 Preliminary case-by-case analysis for n = k = 2

Recall that a system of type n = k = 2 is said to be highly non-degenerate if no three points of its
support belong to a line. Furthermore, recall that a normalized system is of the form

ag + it 4 azyy Yy +ast®yyy® = 0,
(6.4.1)
bo + Y™ + by ys® + batPyMyst = 0.

satisfying that all a; and b; are in RK" and verify ord(a;) = ord(b;) = 0, all w; are in Z?, both
m1, ng are positive and both «, 8 are real numbers.
Consider a highly non-degenerate, normalized system ((6.4.1)).

Lemma 6.30. Assume that the system (6.4.1), satisfies one of the following: coef(ag) = coef(by),
coef(az) = coef(ba) or coef(ag)/ coef(ag) # coef(by)/ coef(bz). Then, one can associate to (6.4.1))
a highly non-degenerate normalized system

co + z?“ + 022?‘2232 + 031572?3233 = 0, (6.42)
0 4.

do + 27" 4 do2l? 202 4 dyt® 220 =

with equations in RK[zlil,zzil} that has the same number of mon-degenerate positive solutions

as (6.4.1), where coef(c;) = coef(d;) fori=0,2.
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Proof. First, the result becomes trivial if satisfies at least two of the equalities of the Lemma.
Indeed, then the three equalities will hold automatically and thus it suffices to consider itself,
and thus proving the result. Therefore, we assume that only one of the mentioned equalities holds
true.
e Assume that coef(ag) = coef(by). The system

apt®® + (ba — a2)yy?ys? — asty P ys® + b4t6ym4y"4 = 0,

6.4.3
coef(agp) (alto‘l +b2y1 52 — ast Yyt ys® + bat? m‘*y"“) = 0, ( )

has the same number of non-degenerate positive solutions of . Indeed, the first equation
of is obtained by subtracting the first equation of from its second one, whereas the
second equation of is obtained by multiplying the second equation of by coef(ag)/bo
and subtracting from it the first equation of multiplied by coef(ag)/ag. Note that a;t** =
bal —ao_l, ag = (ag/ao), BQ = (bg/bo —a2/a0), 2)4 = (b4/b0), &Qtao = bo—ao, ord(dz) = ord(l;j) = 0,
a; > 0 for i = 0,1. Moreover, since coef(ag) = coef(bg), we have

coef (coef(ao)ag> = coef(as), coef <CO€fl()a0)b4> = coef(by)

ao 0

and

coef (coef(ao) <22 - Z2>> = coef(by — a3).
0 0

Since we are only interested in positive solutions of ( -, dividing the first and the second
equation of (6.4.3) by —asy"?y5* and —(coef(ag)as/ao)yy"*y5* respectively will not change the
number of non-degenerate positive solutions of (| - Moreover, this number of non-degenerate
positive solutions will not change if we replace (y1,y2) by (t*yi,t'y2) in for some real
numbers k and [ satisfying ((k,1), (ms — ma,ng — na)) — a = ((k,1), (mg — ma,ng —na)) — = 0.
The system we obtain is

cst’yy Myt 4 a0 oy Tt 4 ey Tyt =0,
i 1 Y | 2 1 2 (6.4.4)
dutdy m1 m2y2 n2y do + yms mzygts n2y dem4 mzygm ny  _ 0,
with
bg — az b4 Qo ao bz a9 b4a0
Co = — ) Co = ——) C3 = ——, doz—* 7 > d2:
as as as as bo ap agbo
a
dy = —ai, v =ap+ ((—ma, —ns), (k,1)) and 8=y + ((m1 — ma, —na), (k. 1)).
3

From coef(agp) = coef(bg) and

coef <coef(a0) <Ib)2 - a2>> = coef(by — as),

0 ao

we have coef(cg) = coef(ds) and coef(cy) = coef(dy). Moreover, all ord(c;) and ord(éj) are zero.
We make the monomial change of coordinates (y1,92) + (21, 22) of (RK*)? such that

37712”3712*7711 n4712fm2n2
2 z

Y1 Yo Yo 172242, where both m; and fny are integers. Finally,
replacing z; (resp. 22) by 27! (resp. z;') if necessary (since the solutions that we are interested

mg—mz2

and y1
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in are non- zero) we have mq,n2 > 0, and thus we obtain a highly non-degenerate normalized
system ([6.4.2)) satisfying the conditions of the Lemma.

o Assume that cocflao) _ cocfbo) ~ pyividing the first (resp. second) equation of (6.4.1) by as (resp.

coef(az) ~ coef(bz) "
bs), and making the monomial change of coordinates (y1,y2) — (21, 22) such that z{h =y yy?
and zm2 "2 = y7"*. Thus we obtain the highly non-degenerate system
ao/ag + 2" + (1/ag)272 2302 + (az/ag)t®2 203 = 0,
) (6.4.5)
bo/bg + Zl (1/1)2)2?2 n2 (b4/b2)tﬁ ma n4 = 0.

Since we are interested in non-zero solutions, replacing 21, z2 by 2 Y Zy L if necessary, we assume
that both m; and 7y are positive. Therefore, the system is a normalized system with
coef(ag/az) = coef(by/by) and coef(1/ag) # coef(1/by). Note that such a change of coordinates
does not change the number of non-degenerate positive solutions. Applying the proof of the case

of coef(ag) = coef(by) to (6.4.5)) gives the result.

coef(ag)  coef(by)
coef(az) — coef(by)’
coordinate changes and monomial divisions on (6.4.1)) to reduce to the already proven case where
coef(ag) = coef(by).

e Assume that coef(az) = coef(by). Similarly to the case where we make

O

Lemma 6.31. Assume that the coefficients of the system (6.4.1) satisfy coef(a;) # coef(b;) for
i = 0,2, coef(ag)/ coef(az) # coef(by)/ coef(ba) and af = 0. Then one can associate to (6.4.1) a
highly non-degenerate normalized system

Co +Z +022m2 M2 + Cgt'y mSZ’I’LS — O,
' s (6.4.6)
do + 20" 4 doz? 252 + dgt®2 20 = 0
wzth equatzons in RK[2EY, 251 that has the same number of non-degenerate positive solutions

as (6.4.1)), where coef(cl) # coef(d;) fori=0,2,
coef(co)/coef(CQ) = coef(dp)/ coef(dy) and v # 0.

Proof. Assume the hypotheses of the Lemma on and assume without loss of generality that
only « is equal to zero. Replace (yl,yz) by (tkyl,tlyz) in so that ((k,1), (ma,n2)) = 0 and

((k,1), (m4,nq)) = —fB. Since is highly non- degenerate, we have ((k,1),(m1,0)) = v #0
and ((k,1), (ms,n3)) = v3 # 0. The system

bo/bs + yMyst + (ba/ba)yys?  + (1/by)ty™ = 0,
(bo —ao)/ba + y"ys* + ((b2 —a2)/ba)yys> — (az/ba)tyyy® = 0

has the same number of non-degenerate positive solutions as . Indeed, the second equation
of the latter system is obtained by subtracting the first equation of divided by by from
its second one also divided by bs. Doing a monomial change of variables (y1,y2) — (z1,22) so
that 2" = y™y2* and 2"2252 = y™2y02 satisfying 7, > 0 and 73 > 0. The result comes from
deducing that bo/bg (bo — ao)/(b2 — CLQ).

O
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Remark 6.32. Thanks to Lemmata [6.30 and [6-31, we only need to consider the following two
cases.

(o, 8) # (0,0) and coef(a;) = coef(b;) for i=0,2 (6.4.7)
and

coef(ag) , coef(by)

af # 0, coef(a;) # coef(b;) for i=0,2 and coct(a2) 7 cool(by)’

(6.4.8)

We start this Section (see Subsection , by writing explicitly approximation polynomials
of for some cells of type (I). The remaining part is mainly devoted to explicitly writing
the reduced systems of with respect to non-transversal intersection points of type (II) and
(III). We also give some key results that we will frequently refer to in the rest of this chapter.

Let Ay and Ay (resp. 71 and 72, T and T») denote the Newton polytopes (resp. dual subdi-
visions, tropical curves) associated to the first and second equation of respectively.

It will be useful for the computations in the following sections to write explicitly the coordinates
of vertices of each of T7 and Ts. Recall that if 77 (resp. T3) has a vertex v (resp. ve) that belongs
to the relative interior of a 1-cone of &£, then it is dual to the triangle A,, € 7 (resp. A,, € T2)
with vertices (m;,n;), (m;,n;) and (ms,ng) (resp. (mu, n4)) for distinct ¢, j € {0,1,2}.

For obvious reasons, the following coordinates of the possible vertices of T3 also hold true for
the possible vertices of Ty by replacing (mg,ns) and « by (my,n4) and 8. Therefore, we state
them only for 77 and distinguish three cases.

- First case: v1 € Lg. The coordinates (x1,x2) of vy satisfy 0 = mixz; = mgx; + n3rs — a,
and thus (z1,z2) = (0, a/n3).

- Second case: v; € Ly. The coordinates (x1,x2) of vy satisfy mizy = moxy + noxy =
msxy1 + n3re — «, and thus

- Ny B (mg — my)a
(1, 22) = ((mg —mi)ng —(m2 —mi)ng  (m3 —ma)ng — (ma — ml)n?')

- Third case: v; € La. The coordinates (z1,xz2) of vy satisfy 0 = mox; + noxe = msz; +
n3xs — a, and thus

na&x Mo
(mlaxZ) = ) - .

manz — Mmang mg3nz — Mang

6.4.1 Approximation polynomials for type-(I) intersections

In this subsection, we assume that 77 and 75 intersect non-transversally at distinct cells &; C L;
and €; C L; for ¢,5 € {0,1,2}, both of type (I), and that each of &; and &; contains the valuations
of non-degenerate positive solutions of ((6.4.1). Then, we have the following result.

Lemma 6.33. If Ty and T, intersect non-transversally at a cell €, C Ly of type (1), different from

&; and from €;, then &k does not contain the valuation of any non-degenerate positive solution

of ).
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We may assume without loss of generality that ¢ = 0 and j = 2, and thus k£ = 1.

Proof of Lemma- Assume that T and T intersect non-transversally at a cell €; C L of type

(I). Since each of €y and QEQ contains the valuations of non-degenerate positive solutions of -,

using same arguments as in the proof of Proposition [6.6] we have coef(ag) coef(az) < 0 (resp.

coef(bg) coef(by) < 0) and coef(ag) < 0 (resp. coef(by) < 0). Therefore coef(az) > 0 and coef(by) >

0, and consequently, the reduced system yi"* + coef(az2)yy?ys? = yi* + coef(b2)yi?ys? = 0,

associated to €1, does not have positive solutions. O
We want to find an approximation polynomial for each of &, and €,. Consider the following

polynomials

fo.r = coef (co)t?® + coef(cy)t12y"2 — coef (az)ty™* + coef(by)tPy™ (6.4.9)

and
mgng—man mygmng —mang

for = ct® —coef(az)t®y™ = g coef (by)tPy— 72 , (6.4.10)
with ¢; = b; — a;, y; = ord(c;) for i = 0,2 and ct? is the first-order term of ¢y — co.

Lemma 6.34. The polynomials fo+ and fa ¢ are approzimation polynomials of (6.4.1) for &y and
&, respectively.

Proof. Since 6‘30 and 532 both contain valuations of non-degenerate positive solutions of ,
using arguments similar to those appearing in the proof of Proposition we may assume without
loss of generality that coef(ag) = coef(bg) = —1 and coef(az) = coef(ba) = 1.

The system already satisfies all properties of Proposition in particular, the cell
& C Lo is contained in {0} x ] =00, 0[. Therefore, the fact that fy, is an approximation polynomial
of for & is straightforward.

A non-degenerate positive solution (v, ) € (RK*)? of with valuation in @2 satisfies
coef(v)™2 coef(g)"? — 1 = 0. Indeed, y]"ys> — 1 = 0 is the reduced system assomated to E,.
Therefore, 129" = 1 4 p with p € RK and ord(p) > 0, thus o = v~ s 1+ ,u) . We have that
the system

ma mangomony
ag + z2 Y4 agzy +agt®z? 2y " = 0,
(6.4.11)

mg4  Mmgmy—mang

bo + 25 + baz1 + b4tﬁz{12 zZg = 0,

obtained via the monomial change of coordinates (y1,y2) — (21, 22) defined by 2z = y;"?y5? and
23 = Y1, has the same number of non-degenerate solutions in (RK*)? as (6.4.1). We now prove
that satisfies all the properties of Proposition Similarly to the proof of Proposition
we deduce from the latter change of coordinates that the tropical curves of the system
intersect non-transversally at a cell &, of type (I). Moreover, the systems (]6 4.11)) and (6.4. 1|) have

the same number of non- degenerate positive solutions with valuations in ¢, and Qfg respectively.
This proves that (6.4.11)) satisfies property ii) of Proposition [6.6]

We have that (:1:1, zg) belongs to &, if and only if it satisfies
0 =21 > max{mixs , —a + myx1/ng + (Myngs — many)xs/no}

and
0 = z1 > max{mixs , —a + msx1/ng + (Mm3na — mang)xs/na}.
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Therefore, since m1 > 0 and myze < 0 for (z1,z9) € ég, we have €, C {0}x ] — o0, 0[. Moreover,
from coef(ag) = coef(by) = —1 and coef(az) = coef(by) = 1, we deduce that (6.4.11)) satisfies
property i) of Pr0p081t10n Therefore f5; is an approximation polynomial of (6 - ) for €. O

In Sections 6.6 . - andﬂ, we use fo ¢ and f2 ¢+ of (6.4.9) and (]6 4.10)) respectlvely, to compute
the non-degenerate positive solutions of | with valuations in QEO and C%g respectively.

Remark 6.35. By Descartes’ rule of sign applied to fo+ (resp. far), the cell &0 (resp. éQ)
contains the valuations of at most three (resp. two) positive solutions of (6.4.1).

In what follows, we denote by I'y and I'; the lower hulls associated to fy;: and fa+ respectively
(see Figure for example).

Remark 6.36. Ifv is a vertex of I'g, then v belongs to the set

{(0,7), (n2,72), (ns, ), (n4,8)} C R

Similarly, if v is a vertex of I's, then v belongs to the set

m3ng — Mmans mMyang — MmNy

{(0,9), ( ;) (

n2 n2

B)}-

Definition 6.37. We say that Ty (resp. T's) is optimally sloped if it does not have edges with
positive slope and it contains all the points of the set {(0,7), (n2,72), (ns,a), (n4,B)} (resp.

{(0,0), (menazmans, q), (manizmans, §)}).

Example 6.38. Consider the particular system (|6.4.1))

1412 4 g6 4 gByb —ppl0y12
(6.4.12)
1428 4 (1 +5)a3y® — 1227yt = 0.

The corresponding approximation polynomials and (6.4.10) are fo.(y) = —t'? + t5y5 —
t15ylt 4 ty'? and foi(y) = t° +ty? — 15y Applylng Corollary - we have that if (6.4.12]) has
six positive solutions, then the first terms of the positive solutions of (6.4.12)) with valuations in

the relative interior QOSO of the cell &y are (1, t%), (1, t%) and (1, t%), and those with valuations

in QOEQ are <t%cl,t’$\/a> and <t%02,t’%\/5> for some cq,cy € R*.

The valuations of these solutions are represented in Figure . Note that this system (|6
has also a non-degenerate positive solution with valuation a transversal intersection point (— il, 1—3)
The system

112 4 g6 4 By 10412 - 0,
(6.4.13)
12 g 4530 LTyl 41012 g

has the same non-degenerate positive solutions as . Indeed, the second equation of
is obtained by subtracting the second equation of from its first one. The tropical curves
associated to intersect transversally in six points (see Fig[6.7). This shows that, since in
this case the curves T7 and T5 intersect transversally, the bound six of Lemma is sharp.
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Figure 6.6: Five solutions of (6.4.12]) with valuations contained in cells of type (I).

/ A

Figure 6.7: Tropical curves of a system of type n = k = 2 intersect transversally at six
points.

6.4.2 Reduced systems for type-(II) intersections

We start with the following result.

Lemma 6.39. If T and Ty intersect non-transversally at a point v of type (II), then Ty and Ts
intersect non-transversally at a cell of type (I) such that v is one of its endpoints.

Proof. Assume that T) and T5 intersect non-transversally at a point v of type (II). Then by
Lemma [6.26] the point v belongs to one of the 1-cones of &, say Ly. By definition, the point v is
the intersection of a vertex v; of 77 and the relative interior of a facet Fy of T5. By Lemma@
we have Fy C L. Since £ is a base fan of 717, the latter tropical curve has a facet Fy C Ly adjacent
to v1, and thus F} N Fy is of type (I) and v is an endpoint of Fy N Fy. O

Corollary 6.40. The reduced system with respect to a non-transversal intersection point of type
(II) is of the form

mg, N4 __

coef(a;)yy" ys® + coef(aj)y;njy;j = coef (b;)y1"ys" + coef(bj)y;n"y;j + coef (by)yMyst =
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or

ms3 n3:0
3

coef b))y  yy" + coef(b;)yy " ys’ = coef(a;)y" yy' + coef (a;)y; " yy” + coef (az)yy"ys
for some distinct 1,5 € {0,1,2}.

Remark 6.41. Each system appearing in Corollary[6.40 is composed of two equations in two vari-
ables and having a total of three distinct monomials. Therefore, the reduced system with valuation
a non-transversal intersection point of type (1) has at most one positive solution.

6.4.3 Reduced systems for type-(IlI) intersections at the origin

The tropical curves T7 and T» intersect non-transversally at a point vy of type (III) that is the
origin of £ if and only if a, 8 > 0. In this Subsection, we assume 0 < o < 8 and («, ) # (0,0).
The system

ao + Y1t + azyi?ys? + ast®y P yy® = 0
(6.4.14)
cot + CQt’Yzy?mygz _ a3tay;n3yg3 + b4t5y1"4y;“‘ = 0,

with ¢;t7 = b; — a;, ord(¢;) = 0 and «; > 0 for ¢ = 0,2, has the same number of non-degenerate
positive solutions as . Indeed, the second equation of is obtained by substracting
the first equation of from its second one.

If coef(a;) # coef(b;) for i = 0,2, and a8 # 0, then 9 = 72 = 0 and the reduced system

ma, N2 m2 77«2_0

coef(ag) + y1'* + coef(az)yy ?y5? = coef(cy) + coef(co)yy ?ys? =

with respect to vy has at most one positive solution (the case of a simplex).
Assume now that coef(a;) = coef(b;) for i = 1,2. Then ~p,72 > 0, and we distinguish the
following cases.

i) First case: there exists only one element of the set {«, 3,70, 72} that is equal to min(a, £, v9, 72)-
The reduced system of ((6.4.14]) with respect to vy has no positive solutions.

ii) Second case: 9 = 72 < min(e, 8). Then the reduced system of (6.4.14]) with respect to vg
becomes

coef(ag) + yi™* + coef(az)yy " ys? = coef(co) + coef(ca)yy?y5? = 0. (6.4.15)

Such a system has at most one positive solution. Indeed, since this is the case where the
support is a simplex.

iii) Third case: @ = 9 < 8 < 72 (the case where @ = v9 < 8 < g is similar).

a) Assume first that & = 79 < min(3,2), then the reduced system of (6.4.14]) with
respect to vy becomes

n2 __

coef(ag) + y7"* + coef(az)yy?ys? = coef(cy) — coef(as)yy*ys* = 0. (6.4.16)
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Such a system has at most two positive solutions. Indeed, since this can be reduced to
an equation in one variable with at most three monomials.

b) Assume now that a« = 79 = 8 < 7. Then the reduced system of (6.4.14) with respect
to vy becomes

mo, N2

coef(ap) + y1™* + coef(az)yy?ys? = coef(co) — coef(as)yy*y5® + coef (bg)y; " ys* = 0.

(6.4.17)
Such a system has at most five positive solutions. Indeed, since this is a system of two
trinomials in two variables (see [LRWO03]).

iv) Fourth case: a =y =2 < 8.

a) Assume first that @ = 79 = 72 < 8. Then the reduced system of (6.4.14]) with respect
to vy becomes

coef(ag) + coef(az)yi?ys? + yi™ =0,
Lo ' (6.4.18)
coef(co) + coef(co)yiys? — coef(as)y;ys® =0.

Such a system has at most three positive solutions. Indeed, since this is the case where
the support is a circuit.

b) Assume now that o = 8 = 79 = 72, then the reduced system of (6.4.14)) with respect
to vy becomes

coef(ag) + coef(az)yyy3? + Y = 0,
coef(cg) + coef(ea)yy?ys? — coef(az)yiys® + coef(bg)yys* = 0.
(6.4.19)

Such a system has at most eight real positive solutions if coef (ag)/ coef(ag) # coef(co)/ coef(cz)
(see Proposition [6.53)).

If coef(ag)/ coef(as) = coef(cy)/ coef(cza), then (6.4.19)) has at most five positive solu-

tions (again, see Proposition [6.53)).
v) Fifth case: @ = 8 < min(vp,~2). The reduced system of ((6.4.14]) with respect to vy becomes
coef(ag) + y7'* + coef(az)yy?ys? = — coef(az)yy*ys® + coef (ba)y ys* = (6.4.20)

which has at most two real positive solutions (same argument as in the case iii) b)).

6.4.4 Type-(III) intersections outside the origin

Let vy denote the origin of £. Lemma [6.26] shows that if T} and T intersect non-transversally at
a point v of type (III) such that v # vy, then v belongs to the relative interior of a 1-cone of £. In
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this Subsection, we write explicitly the reduced system of with respect to v when v € Ly
or v € Ly. We explain in Section why we omit the study of the reduced system of with
respect to v if it belongs to Ly. Moreover, we state Lemmata that give constraints on the tropical
curves intersecting at a type-(III) point.

e Assume that v € Ly. Then the reduced system with respect to v becomes

ma, n2

Y1t + coef(az)y " ys? + coef(az)yys® = yi"* + coef (bz)y;"ys* + coef(by)y"*ys* = 0. (6.4.21)

Note that if coef(az) = coef(bg) and (6.4.21) has a positive solution («, 3) € (R*)?, then « is a
solution of

mg(ng—nyg)+ng(myg—ms) ngmg—mgng
Yyt + dayy raTn +dsy, " =0, (6.4.22)
and (a, () satisfy
1/(n3—na)
coef(by) m4—mg
= ———= n3=n 6.4.23
p (coef(ag) an ( )

with

na/(nz—na) nz/(nz—na)
coef(by) \ coef(by)

do = coef — d ds = coef — .
o = coef(az) (coef(a3)> an 3 = coef(as) coof(as)

e Assume now that v belongs to Lg. Then the reduced system with respect to v becomes
coef(ag) + y1"* + coef(asz)yy " ys® = coef(bg) + y™* + coef (ba)yT ys* = 0. (6.4.24)

Similarly, if coef(ag) = coef(bg) and ([6.4.24) has a positive solution (a,3) € (R*)?, then « is a
solution of

ngmg—ms3ng

coef(ag) +y7"* +dsy, ™" =0. (6.4.25)
and (o, B) satisfy (6.4.23).

Remark 6.42. Both (6.4.21) and (6.4.24) have four monomials in their support, thus each of
them has at most three positive solutions. On the other hand, following Descartes’ rule of signs,
each of (6.4.22) and (6.4.25) has at most two positive solutions.

The following Lemmata will be useful in the next Sections. Recall that we assumed that (6.4.1))
is highly non-degenerate.

Lemma 6.43. The tropical curves Ty and Ty have at most one intersection point of type (III),
different from the origin.

Proof. Assume without loss of generality that T and T5 intersect at two points v; and ve of type
(ITI) such that v; € Ly and vy € Ls. Lemma shows that, since both v; and vy are vertices
of T1 and T5, the tropical curve T} (resp. T») has an edge Fb 3 (resp. F4) adjacent to both vy
and ve. Therefore, we have F5 3 = Fj 4, and thus it is a non-transversal intersection of type (I) in
Cy. This implies that the segments [wq, ws] € 71 and [we, w4] € T2 are parallel, which contradicts

that (6.4.1) is highly non-degenerate. (see Figure [6.8). O
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v
V2
wo ; w
¢ Wy

Figure 6.8: An example showing that if T} and T» intersect non-transversally at two points
of type (III), then the system (/6.4.1]) is not highly non-degenerate.

Lemma 6.44. Assume that Ty and Ty intersect non-transversally at a point v # vo of type (III).
Then T, and Ty intersect transversally in at most one point. Moreover, if this is the case, then
this transversal intersection point is not contained in a 2-cone of € adjacent to v (see Figure ,

Figure 6.9: The tropical curves T7 and 75 intersect transversally at only one point belong-
ing to Co.

Proof. Assume that 17 and T5 intersect at a point v € EO of type (III). Since v is a common vertex
of T} and Ty, applying Corollary and Lemma to Th and Ty, we get that Cq and C; do
not contain transversal intersection points of 77 and T5. Moreover, Theorem shows that Cy
contains at most one transversal intersection. O]

6.5 Proof of Theorem [6.1]

In all what follows, we assume that (a, 8) # (0,0), and consider the highly non-degenerate nor-
malized system

ao +y1" + a2y ys” + ast®y Pyt = 0,
(6.5.1)
bo+ 7™ + bayiyy? + bat?yMyyt = 0.
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satisfying that all a; and b; are in RK* and verify ord(a;) = ord(b;) = 0, all w; are in Z?, both
myq, no are positive and both «, § are real numbers.

Recall that since £ is a base fan of , then the possible intersection components of
the tropical curves T7 and T3, associated to the first and second equations respectively, are the
following.

1. The set of transversal intersection points, denote it by ¥.

2. A set of at most three non-transversal intersections of type (I), satisfying that for i € {0, 1, 2},
a 1-cone L; of £ contains at most one type-(I) intersection, denoted it by &;.

3. The set of non-transversal intersection points of type (II) , denote it by .
4. The origin of the base fan &, denote it by vyg.

5. A non-transversal intersection point of type (IIT), outside the origin of £, denote it by wv.
There can be at most one of such type since (6.5.1) is highly non-degenerate.

We have the following two results.

Lemma 6.45. The (possibly empty) set {v} U T contains the valuations of at most four non-
degenerate positive solutions of (6.5.1)).

Proof. If T} and T do not intersect non-transversally at a point v of type (III) outside the origin
of &£, then Theorem shows that (6.5.1) has at most three non-degenerate positive solutions
with valuation in ¥. Otherwise, the result comes from Remark and Lemma [6.44 O

Proposition 6.46. If « # 8 or « = 8 < 0, then the set &0 U &1 U ég UNe U{vg} contains the
valuations of at most five positive solutions of (6.5.1).

Proof. Assume that a # g or a = < 0.

e Assume first that coef(a;) = coef(b;) for i = 0,2. Then, a consequence of Corollary gives
that any intersection point of type (II) is not a valuation of a non-degenerate positive solution
of . Moreover, since we do not have a = [ > 0, then the origin vy of £ is the valuation
of at most three non-degenerate positive solutions. Indeed, this comes from the analysis done
in Subsection where the possible case that gives the biggest sharp bound is iv) a) with
O<a=9y=r7<p If does not have non-degenerate positive solutions with valuations
in the relative interior of an intersection cell of type (I), then {vg} is the only element of the set
&o U CO€1 U QOEQ UMy U{vo} that contains the valuations of non-degenerate positive solutions of ,
and we are done.

Assume that has non-degenerate positive solutions with valuations contained in the
relative interiors of intersection cells of type (I). Then Lemma shows that the relative interior
of at least one intersection cell of type (I), say €; C L;, does not contain valuations of non-
degenerate positive solutions of (6.5.1)). Similarly as in Subsection we study here four cases
with respect to the values of «, 3, 7o and 2. Recall that fo; and fa, in and
respectively are approximation polynomials of for €y and €, respectively, and that f,; and
f2,+ have at most three and two non-degenerate positive roots respectively. We keep the notations
for I'y and I's as the lower hulls of the Newton polytopes of the Viro approximation polynomials
fo+ and fa+ respectively. We apply Corollary by counting in each case the number of edges
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of Fo and I's with negative slope. We will deduce after each of the following cases that the set
Qfo U Qfg U{vp} contains the valuatlons of at most five non-degenerate positive solutions of -,
and thus the same goes for CoUC UG, UM, U {vo}.

i) First case: there exists only one element of the set {«, 3,70, 72} that is equal to min(«, 8, v0,72)-
Then does not have non-degenerate positive solutions with valuation vy (since in any
case, the second equation of has only one monomial). Therefore, the lower hulls T'y
and T's has at most three (resp. two) edges with negative slope, and thus the set éo U 532
contains the valuations of at most five non-degenerate positive solutions of .

ii) Second case: 79 = y2 < min(a, 8). Then has at most one non-degenerate positive
solution with valuation vy. Moreover, the relative interior &0 of &y has at most two non-
degenerate positive solutions since the lower hull 'y, associated to fy, has at most two edges
with negative slope. Therefore, the system has at most four non-degenerate positive
solutions with valuation in &0 U ég.

iii) a) Third case: a = 7 < min(8,v2) (the case where o = 72 < min(8,7y) is similar).
Then has at most two non-degenerate positive solution with valuations vy (case
of a trinomial and a binomial). Moreover, & (resp. Qofg) has at most two (resp. one) non-
degenerate positive solutions since the lower hull T'y (resp. I's), associated to fo; (resp.
f2,+), has at most two (resp. one) edges with negative slope. Therefore, the system

has at most three non-degenerate positive solutions with valuation in &y U €.

iv) a) Fourth case: o = 799 = 72 < . Then has at most three non-degenerate positive
solution with valuation vg. Moreover, for ¢ = 0,2, &z has at most one non-degenerate
positive solution of since the lower hull I';, associated to f;: has at most one edge
with negative slope. Therefore, the system has at most two non-degenerate positive
solutions with valuation in &0 U (‘032.

This finishes the proof for the case where coef(a;) = coef(b;) for i = 0, 2.

e Assume now that coef(ag)/ coef(bg) # coef(az)/ coef(bs) and coef(a;) # coef(b;) for i = 0,2 (see
Remark . Note that from the beginning of this section, we have a8 # 0. Then vy is the
valuation of at most one non-degenerate positive solution of (since the reduced system is
supported on a simplex). Moreover, the system does not have any solutions with valuation
in any &Z for i € {0,1,2}. Indeed, since from coef(ag) # coef(by), the reduced system with respect
to QOSO for example, is

coef(ag) + y1** = coef(by) +yi"* =0

and thus has no solutions.

The tropical curves 77 and T3 intersect in at most five non-transversal intersection points of
type (II). Indeed, since T} (resp. T») has at most three vertices outside v, and this happens only
when a (resp. ) is negative. Moreover, if o and g8 are both negative or positive, then T} and T5
intersect in at most three points of type (II) (see Figure for example).
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N

Figure 6.10: Possible restrictions for 77 and 75 with respect to «, 8. From left to right:
a<0<pfB,a,B8<0and o, > 0.

Therefore, if 77 and T» intersect at five points of type (II), then these two curves do not
intersect at the origin vy of £, since one would require that a, 5 > 0. This finishes the proof. O

The following corollary proves Theorem [6.1] for the case where a # 8 or a = 8 < 0.

Corollary 6.47. If a # 8 or a = 3 < 0, then the set
TUEUE UE UN, U {vg} U {o}
contains the valuations of at most nine positive solutions of (6.5.1).

Proof. If (o, ) # (0,0), by Lemma [6.45] the set T U {v} contains the valuations of at most four
positive solutlons of - By Propos1t10n 6l if in addition we have a # 8 or a = 8 < 0, then

the set Q‘Eo U @1 u Q‘Eg UM U {vp} contains the valuations of at most five positive non-degenerate

solutions of ((6.4.1] - . O

In what follows, we assume that o = S > 0. If coef(a;) # coef(b;) for i = 0,2 and
coef(ag)/ coef(by) # coef(as)/ coef(by), and af # 0 (see Remark [6.32)), and thus Theorem
comes easy. Indeed, Lemma and the second part of the proof of Proposition also apply
to this case, and thus so does Corollary

We assume furthermore in what follows that coef(a;) = coef(b;) for i = 0, 2, thus the normalized

system ((6.4.1]) becomes

ap + Y1t + a2y Pys? + ast®y Py, = 0,
(6.5.2)
b() =+ Yp mi bgym2 D2y b4ta m4y;7,4 = 0.

In this section, we prove the following result.

Theorem 6.48. The system (6.5.2)) has at most nine non-degenerate positive solutions. Moreover,
there exists a system (6.5.2)) that has seven non-degenerate positive solutions.

We first show why the first statement of Theorem is trivial if both coef(ap) and coef(as)
are positive. Note that the reduced system of with respect to the origin will not have
positive solutions. Indeed, since the reduced system of with respect to the origin will
have the equation coef(ag) + yi™* + coef(az)yy ?y5?, which has no positive solutions. If 77 and T
intersect non-transversally at a cell of type (I), the relative interior of such a cell does not contain
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the valuations of positive solutions of (this follows from coef(ag), coef(az) > 0 as in the
proof of Lemma for example). Moreover, we deduce from Corollary that does
not have non-degenerate positive solutions with valuations non-transversal intersection points of
type (IT). Therefore, the only cells of T and T» that can contain the valuations of non-degenerate
positive solutions of are transversal intersection points and non-transversal intersection
points of type (III) that are different from (0,0). Theorem shows that has at most
three positive solutions with valuations transversal intersection points of 77 and T5. Therefore,
if there does not exist a non-transversal intersection point of type (III) in the relative interior
of a 1-cone of &, then has at most three positive solutions. Otherwise, if there exists a
non-transversal intersection point v # (0,0) of type (III), then Remark[6.42)and Lemma [6.44] show
that has at most three positive solutions, and we are done.

In what follows, we assume that coef(ag) < 0 and coef(az) > 0 are not both positive. Note that
if coef(agp), coef(az) < 0, or coef(ag) > 0 and coef(az) < 0, one can associate to a normalized
system similar to that has the same number of non-degenerate positive solutions as
and satisfying coef(ag) < 0 and coef(ag) > 0. This is done via monomial change of coordinates and
multiplying the equations of by some terms (as the ones made in the proof of Lemma m
for example).

Multiplying each polynomial of by some real number and making some change of
coordinates if necessary (see the proof of Proposition for example), we may assume that

coef(ap) = —1 and  coef(ag) = 1. (6.5.3)

6.5.1 First part of Theorem [6.48

In this subsection, we prove the following result.
Proposition 6.49. The system (6.5.2) cannot have more than nine positive solutions.

Let Ay and Ay (resp. 71 and 72, T and T3) denote the Newton polytopes (resp. dual subdi-
visions, tropical curves) associated to the first and second equation of (6.5.2) respectively.

Lemma 6.50. The curves Ty and T> cannot intersect transversally at more than one point.

Proof. Assume that T} and T» intersect transversally at two points pg and p;, we prove that this
gives a contradiction. We treat the case py € Co and p; € C; (the other cases are symmetric).
Using Lemma [6.28] we compute the coordinates of py and p; to obtain ko(ns —ns , ms —my) and
k1(n4 — n3 , mz — my) respectively, with

e !

ko= ———"— and k= .
m3ng — MMyns ms3ng — Mmyng — m1(ﬂ4 - n3)

Note that since py € Cy and p; € Cq, we have ko(ns — ng) < 0 and k1(ng — ng) > 0. Indeed,
the 1-cone Ly (which is adjacent to both Cy and C;) belongs to a vertical line passing through the
origin (0,0) of £.

Assume that mgny —mang > 0, then since kok1 < 0 (from ko (n4s—ns3) < 0 and k1 (na—ng) > 0),
we obtain msng — mynsz — my(ng — n3) < 0 from the expressions of ko and k1. Therefore, from
0 < mgng — myng < my(ng —n3) and my; > 0, we obtain 0 < ng — nzg. We deduce from
ko(ns — ng) < 0 that ko is negative, which makes a also negative, a contradiction. Similarly, we
arrive at a contradiction when assuming that msns — myns < 0. O
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Lemma 6.51. If T} and Ty intersect non-transversally at a point v # (0,0) of type (III), then Ty
and Ty do not intersect transversally at a point, and the reduced system with respect to v has at
most one positive solution.

Proof. Assume that 77 and T5 intersect non-transversally at a point v # (0,0) of type (III)
and transversally at a point p, we prove that this gives a contradiction. Assume without loss
of generality that v € Ly. Since 77 and T have vertices in Ly that coincide, from the equality
a/ns = a/ny (see the beginning of Section 7 we deduce that ng = ny. Moreover, since o > 0
and v € Ly, we have n3 = ny < 0. On the other hand, Lemma shows that p € Cy, thus by
Lemma [6.28] the coordinates (z1,22) of p verify

MoX1 + Nokog = M3T1 + N3Ty — X = MyT1 + N3Ty — Q.

A simple computation shows that p = (0,a/(ns — na)), and thus a/(n3 — na) > 0. Indeed, since
otherwise we get that the transversal intersection point p belongs to Lo, contradicting Theorem[6.15}
Recall that ng > 0 ( is a normalized system). Now, since @ > 0 and «/(n3 — ng) > 0, we
get ng — no > 0, a contradiction to ng < 0 < na.

As for the second part of the Lemma, the reduced system with respect to v is

— 14y + coef(az)yys® = —1 4+ yi™ + coef (by)y™ys* =0, (6.5.4)

and has at most one positive solution. Indeed, assume that (pi, p2) is a positive solution of the
latter system. Taking the difference of two equations we get coef(as)p]"® = coef(bs)p]"™, and thus
p1 = (coef(az)/ coef(by))'/(Ma=m3) . Plugging it in the first equation of (6.5.4), we retrieve only
one value for ps. O

Note that since o > 0, the curves T7 and T% intersect non-transversally at the apex of £ (see
Figure for example). Furthermore, these curves intersect at three cells &y, €; and & of
type (I) contained in Lg, Ly and Ly respectively. Denote again the apex of £ by vg. It follows
from Corollary that since coef(a;) = coef(b;) for i = 0,2, the system does not have
a positive solution with valuation at a point of type (II). Since coef(az) > 0, the reduced system
y1 + coef(az)y;"?y5? = 0 does not have positive solutions (see Proof of Lemma for example),
thus Qofl does not contain valuations of positive solutions of . Lemmata and 6.51| show
that whether T7 and T, intersect non-transversally at point v # vy of type (III) or not, the set
D :=T1NT\ (&0 U& U U {vp}) contains the valuations of at most one positive solution

of G52,

Figure 6.11: Examples showing that the curves T} and T intersect at the apex vy of €
and at three cells of type (I).
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From Subsection the number of positive solutions of (6.5.2)) with valuation vy is equal
to the number of positive solutions of the reduced system of

=14y +y"?ys? + ast®y P ys® = 0,
(6.5.5)
cot™ + oty ys? — asty P ys® + bat®yMyst = 0

with respect to vg, with ¢;t7 = b, — a;, ord(¢;) = 0 and 7; > 0 for ¢ = 0,2. Recall from
Subsection [6.4.1] that

fo,e = coef(cg)t? + coef(ca)t?y"? — coef(ag)t*y™® + coef (by)t*y™ (6.5.6)

and

mg3ang—mang mgang—mang

for = ct® —coef(ag)t®y~ ™ + coef (by)ty™ "2, (6.5.7)

with ¢; = b; —aj;, % = ord(cz) for i = 0,2 and ct’ is the first-order term of ¢, — ¢y, are approximation
polynomials of for €y and &, respectlvely We deduce from Corollary- 6.12| that the number
of non—degenerate posmve solutions of with valuation in @0 (resp. €,) is less or equal to
the number of non-degenerate roots ]RK>O of fo,t (vesp. fa.) with positive order and that are also
largely ordered (see Definition with respect to fo; (resp. f2). The first order terms of all
such roots of fo: and fa+ are completely determined from some edges of I'y and I'; with negative
slope together with their respective facial subpolynomials.

Remark 6.52. In what follows, by “edge” of the lower hull Ty (resp. T'3), we mean a segment of
Ty (resp. T's) that supports only a binomial.

In we make an analysis on fo ¢, fo and with respect to the different possibilities
of equalities and inequalities between «, 79 and 5. The results obtained in can be summa-
rized in the following two tables. The numbers appearing in the entries of these tables represent
the maximum number of positive solutions of with valuations in the associated intersection
components of 77 NTy. In fact, the non-zero entries in the row &g (resp. &3) correspond to the
maximal numbers of edges of I'y (resp. I'y) with negative slope.

Intersection Locus | 79 # 72 and min(yp,72) < a | 70 =72 < a | a < min(yg,y2)
D 1 1 1
&g 2 1 2
G 1 1 1
{vo} 0 1 2

Table 6.1: a # ; for i =0, 2.
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Intersection Locus | a =y <72 | @ =72 < 70 a =5 =2 a =5 =2
coef(cg) = coef(ca) | coef(cy) # coef(ca)
D 1 1 1 1
& 0 1 0 0
(G 0 0 1 0
{vo 5 5 5 8

Table 6.2: o = ~; for i € {0,2}.

The bound 8+1 = 9 for the number of non-degenerate positive solutions of ([6.5.2)) is the largest
among all other possible cases shown in the latter tables. This finishes the proof of Proposition [6.49]
given that the entries of the tables are correct.

6.5.1.1 Proof that the entries of the tables (6.1) and (6.2) are correct

We make an analysis similar to that formulated in Subsection [6.4.3]on fo ¢, f2+ and on all possible
reduced systems of (6.5.5)) with respect to vg. Assume without loss of generality that ny < ng.
First, we note that I'g is the lower part of the convex hull of points in

{(0,7%), (n2,72), (ns, ), (n4,a)}.

Since (ns,a) and (n4, @) have the same second coordinate, clearly 'y has at most two edges with
negative slope. The same goes for I's, which is the lower part of the convex hull of at most three
points among

{(0,9), ((m3ng —mansz)/na, @), ((Mmgng —mang/na, a)}.

Thus I's has at most one edge with negative slope.

i) First case: 79 # v2 and min(yg,¥2) < a. Then the reduced system of (6.5.5)) with respect to
vo has no positive solutions (since in any case, the second equation has only one monomial).
We see an example in Figure of 'y and I's.

(71;;, l!) [ (71 1, “) (zn,nzn—;nzn L O) (m_ rw"—znmn_ . “)

(0,7%) \
(

(0,0)

n2,72)

\

\/

Figure 6.12: The graphs I'g and I's in the first case.

ii) Second case: 79 = 72 < a. Then the reduced system of (6.5.5) with respect to vg is

ma, N2 __

=14+ y"" + yi"ys? = coef(cg) + coef(ca)y?ys? = 0,
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(n3, )

which has at most one positive solution (this is deduced by replacing y7"?y5? by — coef(c2)/ coef(co)

in the first equation of the latter system). Since the points (0,7p) and (ng,~2) have the same
second coordinate, the lower hull I’y has at most one edge with negative slope (see Figure
on the left for example).

<n4. a) (mmzn—?mznq A a) (Vrlsrlzr;rrlzrls R a)

(0,70) (n2.72)
0,3)

iii)

iv)

Figure 6.13: The graphs Iy and I's in the second case.

Third case: 79 = a < v (The case where 79 = @ < 72 is similar). The reduced system

of (6.5.5) with respect to vg is
=1+ 9" +yyy® = coef(ca)y;?yy? — coef(az)yyyy” + coef(ba)y;  y5* =0,

which has at most five positive solutions (since this system is of two trinomials in two
variables). The lower hull 'y has at most one edge with negative slope (see Figure on
the left). Recall that 6 = ord(ca — ¢g). Thus, since 75 = a < g, we get d = 2 < o which
implies that I'y is a horizontal edge (see Figure on the right).

n2

(ng,a)  (n2,72) (n4, @) (0,6)

(0,%)
(manz—mang ) (mgnQn;ang )

A\
\j

Figure 6.14: The graphs 'y and I's in the third case.

Fourth case: 79 = a = 9. The lower hull I'y is a horizontal segment (see Figure on the
left). Then the reduced system of (6.5.5) with respect to vy is

-1 + "% yy? + Yyt = 0,
(6.5.8)

ma, N2

coef(cg) + coef(ca)yiys? — coef(as)yys® + coef(bq)yy*ys* 0.

We distinguish two cases:
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1. Assume that coef(cg) = coef(ca). Then has at most five positive solutions (see
Proposition . Since the first-order term of ¢y — ¢ is ct®, from coef(cq) = coef(cs),
ord(co) = ord(c2) = Yo = Y2, we get § > 9 = 2 = a. Therefore, the lower hull 'y has
at most one edge with negative slope (see Figure on the right).

2. Assume that coef(cg) # coef(cz). Then has at most eight positive solutions (see
Proposition . Since the first-order term of ¢y — ¢ is ¢t®, from coef(cq) # coef(cs),
we get § = 79 = 72 = . Therefore, the lower hull I'; is a horizontal line (see Figure[6.14]
on the right).

©.9) ‘\
(manz=man

(0- ’\/0) (!7)/\!12*771,271,1 “> na ’ (Y)
(n2,72) (n3, ) (n4, @) "

Figure 6.15: The graphs I'g and I'e in the fourth case.

v) Fifth case: a < min(7p,72). Then the reduced system of (6.5.5) with respect to vy becomes
myg, Mg __

14+ y" 4+ yye? = — coef(as)yyys® + coef(by)yyys* =0,

which has at most two positive solutions.

(0,70)

>

(0,0)

(n4,q) (manz=mons Y

many—mang
n2 ( .(\)

na

\J
\j

Figure 6.16: The graphs 'y and I's in the fifth case.

Consider the real polynomial system

-1 + Y yy? + Y = 0,
(6.5.9)
coef(cg) + coef(ea)y™ys? — coef(as)yyys® + coef(bsg)yyys* = 0,

with support in Z?, where both m and ng are positive integers. O
pp )



6.5. Proof of Theorem 120

Proposition 6.53. If coef(cg) = coef(cs), then (6.5.9) has at most five positive solutions. More-
over, if coef(cq) # coef(ca), then (6.5.9) has at most eight positive solutions.

Proof. For the first statement. Without loss of generality, suppose that coef(cy) < 0. Then, the

system
-1 +ytyse + ot =0
6.5.10
,Mym:ﬂym + %(b‘l)y"“yn4 -yt =0 | )
coef(co) 7t 72 I A ' 7

has the same number of non-degenerate positive solutions as . Indeed, the second equation
of is obtained by dividing the second equation of by coef(cq), and subtracting from
it the first equation of . The system is a system of two trinomials in two variables,
thus it has at most five positive non-degenerate solutions.

For the second statement. Assume now that coef(cg) # coef(cz). We look for the positive
solutions of . The first equation of this system may be written as y, = (1 — x)?, where
x =y, @ =—mg/(ming) and S = 1/ne. It is clear that y1,y2 > 0 < =z € Iy =|0,1[. Plugging
y1 and yo in the second equation of , we get the equation f = 0, with

f(x) = coef(cy) + coef(cg) — coef(ca)x — coef(ag)z*® (1 — x)ﬁg + coef (bg)x™ (1 — az)ﬁ“,

ming — man; n;

o = —2— 27 and B; := — for i = 3,4. The number of positive solutions of (6.5.9) is equal
ming n2

to the number of roots of f in Iy. Note that the function f has no poles in Iy, thus by Rolle’s

theorem applied to f and f’, we have
Hloel | fa) =1} <f{z €l | f'(z) =0} +2.

Since
f"(x) = — coef(az)z**~2(1 — x)?* 2 Hy(x) + coef (by)z*2(1 — ) * =2 Hy(z),

where H3 and H, are polynomials of degree at most two, we get
" (z) =0< ¢(x) =1, where

_coef(az) a*m(1 - x)Ps =B Hy ()

o) = coef(by) . Hy(x)

Thus applying Theorem [£.2)of Chapter [4] (with max(deg Hs, deg Hy) = 2) we get #{z € I, | f"(z) =
0} <6, and therefore (6.5.9) has at most eight positive solutions. O
6.5.2 Construction: second part of Theorem [6.48

In this subsection, we prove the following result
Proposition 6.54. There exists a system (6.5.2) having seven non-degenerate positive solutions.

In what follows, we impose o = 5 < 7 to construct a system with seven positive
solutions (see Table . Assume that 630 contains the valuation of one (which is the maximum
possible for this case) positive solution of . Then, the lower hull I'y has only one edge with
negative slope, and thus both n3 and ny are positive (see Figure on the left).
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Therefore, since a > 0, both T7 and T5 do not have a vertex in Lo (see Figure for example).
Consider the reduced system

-1 + oy + yys? = 0,
(6.5.11)

mq , N4 ma, N2

coef(bq)y ™ ys* — coef(as)y™ys® + coef(co)yi?ys? = 0,

of (6.5.5)) with respect to vg.

Lemma 6.55. If the curves Ty and Ts intersect non-transversally at a point v # vg of type (III),
then (6.5.11)) does not have five positive solutions.

Proof. Assume that T} and T, intersect non-transversally at a point v of type (III). We consider
the case where v € Ly since the other cases are symmetric. Then, since v is a common vertex of

T7 and T5, we have
ano ano

M3ng — Mang  MaNg — Manyg’

from which we deduce (m4—ms)ne—ma(ng—ns3) = 0. This means that the segments [(0, 0), (ma, n2)]
and [(mg, n3), (m4,ny)] are parallel. Note that the Newton polytopes of the first and second equa-

tions of (6.5.11)) are the triangles
[(0,0), (m1,0), (m2,n2)]  and  [(m2, n2), (M3, 13), (M4, n4)]

respectively. Since (mg—mg)nga—ma(ns—ns) = 0, the vector Fy 2, normal to the facet [(0,0), (ma, n2)]
of [(0,0), (m1,0), (m2,n2)], is equal (up to a scalar multiplication) to the vector Fj 4, normal to
the facet [(ms,n3), (ma4,n4)] of [(ma,n2), (Mm3,n3), (M4, nq)]. Therefore, the triangles

[(07 0)’ (mh 0)’ (m27 nQ)] and [(mQ’ n2)7 (mg, n3)v (m47 77'4)]

would alternate (see Definition in Chapter [4)), and thus by Theorem of Chapter {4] the
system (6.5.11)) cannot reach the maximal number five of positive solutions. O

We assume in what follows that 77 and T do not intersect non-transversally at a point of type
(ITI) belonging to the relative interior of a 1-cone of &.

Remark 6.56. The set © =T NTs \ ((’030 U 631 U (’032 U {wvo}) consists of transversal intersection
points (which has cardinality at most 1 by Lemma together with non-transversal points of

type (II).

Since intersection points of type (II) are not valuations of non-degenerate positive solutions
of , Remark shows that has at most one non-degenerate positive solution with
valuation in @, that is, by Lemma [6.50] a transversal point. Therefore, Table shows that since
a =2 < 7o, the curves 77 and T intersect transversally at a point p.

We start our construction by finding a system that has five positive solutions. Since
systems of two trinomials in two variables having five positive solutions are hard to generate
(c.f. [DRROT]), we will borrow one from the literature and base our construction upon it.

First, we define a univariate function f such that for some constant ¢, the equation f = ¢ has
the same number of solutions in |0, 1] as that of positive solutions of . Assume without loss
of generality that coef(as) = —1. The first equation of may be written as y, = 2*(1 — z)?,
where z := yI"', k = —my/(ming) and | = 1/ns. It is clear that y1,y2 > 0 < © € Iy :=0, 1]. Since
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we are looking for solutions of (6.5.11) with non-zero coordinates, we divide its second equation
by y7"?ys?. Plugging y; and ys in the second equation of [6.5.11} we get

coef(ca) 4+ 2% (1 — x)" + coef(by)z™ (1 — z)™ =0, (6.5.12)

m;i;ng — Man; n; — Ny

where k; = and [; = for i = 3,4. The number of positive solutions of ((6.5.11])
ming

na
is equal to the number of solutions of (6.5.12)) in I;. Therefore we want to compute values of
coef(cz), coef(by) and (my, n;) for i = 1,2, 3,4 such that f(x) = — coef(cq) has five solutions in I,
where

f(x) := 2™ (1 — ) + coef(by) - 2*2 (1 — x)'2. (6.5.13)

Note that the function f has no poles in Iy, thus by Rolle’s theorem we have §{z € Iy |f(z) =
1} <t#{x el |f'(z) =0} + 1. Since

Fla) = 21 (1= 2) o) + s (1= ) ),
where p;(x) = k; — (k; + 1;)x for i = 3,4, we get f'(x) =0 < ¢(z) = 1, where

oh ks (1= )1ty (a)

od(x) := — coef(by) o2 ()

(6.5.14)

Consider the system
2% 4 (44/31)y® —y = y5 + (44/31)2® —z = 0, (6.5.15)

taken from [DRRO7], which has five positive solutions. The rational function (6.5.14)), associated
to (6.5.15|) is
56 w/O(1—a)'/3(=11/4 4 92/4)

(—=35/12 4+ 11x/4)

po() = (44/31)

Thus, if

6

coef(b4) = — <;l;l> s k4 — kg = %, l4 — lg = %7
—% and ks = —%,
then ¢(z) = 1 has four positive solutions in Iy. Assume that equalities in hold true.
Plotting the function f : R — R, z — f(x), we get that the graph of f has four critical points
contained in Iy with critical values situated below the x-axis. Moreover, this graph intersects
transversally the line {y = —0.36008} in five points with the first coordinates belonging to Ij.
Therefore, the equation f(x) = —0.36008 has five non-degenerate positive solutions in Iy. In what
follows, we find (m;,n;) € Z? for i = 1,2, 3,4, satisfying the equalities in so that
has five non-degenerate positive solutions.

Assume that mo > 0 and recall that both m, and nsy are positive. The equalities in
show that [; > 0, k; < 0 and k; < [; for i = 3,4, therefore we have 0 < ny < ng, m;ng —n;mg <0
and (m; — my)ng — ny(mg —my) < 0 for ¢ = 3,4. Plotting the three points (0,0), (m1,0) and

(6.5.16)
kg =
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(mg,ng), we deduce from the latter inequalities that the points (mg,n3) and (mg4,n4) belong to
the region By of Figure [6.17]

(0,0) (m1,0)

Figure 6.17: The region By and triangle By i

We also deduce from equalities in that Iy > I3 and k4 > k3, and thus ns > ng and
(m4 —mg)ng — (ng —ng)me > 0. Fixing (ms,n3) in the region By, we obtain that (m4, n4) belongs
to the triangle By 1 depicted in Figure

Note that the vertex v; € Ly (resp. vy € La) of T1 (resp. T») has coordinates

« «

(n2, —mg2) <T65P~ (na2, —m2)> )

m3nz — N3z mgng — NgMma
and thus from mgng — nzgme < myng — nagmo < 0, we deduce that the first coordinate of wvs is
smaller than that of v, (see Figure .

All these restrictions impose that there exists a transversal intersection point of 77 and T3 in
Cy (see Figure [6.18] for example). Moreover, since coef(bs) < 0 (see (6.5.16)), coef(az) = —1 (by
assumption) and coef(ag) = coef(by) = —1, Proposition shows that the intersection point p
is the valuation of a positive solution of (6.5.2). Since coef(cz) = 0.36008 (from the choice f(z) =
— coef(cz) = —0.36008), for any negative coef(cy), the facial subpolynomial coef(cg) + 0.36008y™2
of fo. has a positive root. We choose coef(cp) to be equal to —0.36008 so that the root for
—0.36008 + 0.36008y™* becomes equal to 1.

According to this analysis, it suffices to choose exponents and coefficients of satisfying
my = 6, (ma,na) = (3,6), (ms,n3) = (=14,7), (mg,ng) = (=12,9), ap = —1, as = 1, a3 = —t*,
bp = —1 4 0.36008t" (verifying vo > «), bp = —1 +t* and by = — (44/31)5/6 t®. Therefore, the
system

-1 + 48 + yiys — oy Myl 0,

(6.5.17)

—1+0.36008t™ + 3% + (1—0.36008t%)y5yS — (44/31)8t%y; 23 0,

which has seven non-degenerate solutions, proves Proposition [6.54
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(55 1)

Figure 6.18: Newton polytopes and tropical curves associated to a normalized system
having seven positive solutions.

6.5.2.1 A software computation

Using Maple 17 as well as the libraries FGb and RS, Pierre-Jean Spaenlehauer [Spa] provided
us with a computation he made of the non-degenerate positive solutions of a system (6.5.17)) for
Y0 = 7 and o = 1 that goes as follows. For computational reasons, he has replaced the real number

(44/31)5/6 in (6.5.17) by the fraction

26807502408507435267952730104920543812845885439976
20022295568917288472920446333489413342983920443429

which approximates (44,/31)5/6. For t = 1/100 000, the computer software has found seven positive
solutions. An approximation of these solutions goes as follows.

(0.99999, 0.00001), (0.99171, 0.60681), (0.96651, 0.76771), (0.95765, 0.79907),

(0.95201, 0.81642), (0.88602, 0.95151), (0.53645, 1.61099).

6.6 Proof of Theorem (part 1).

Consider a highly non-degenerate normalized system

ap + Yy + a2y yy* +ast®yPyy® = 0,
(6.6.1)
bo + yi" + bayi"?ys? + batyMyst = 0.

satisfying that all a; and b; are in RK* and verify ord(a;) = ord(b;) = 0, all w; are in Z?, both my,
ng are positive and both «, 8 are real numbers. This Section is devoted to proving the following
result.
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C

Figure 6.19: The seven regions.

Theorem 6.57. If coef(a;) = coef(b;) for i = 0,2 and either o # B or o < 0, then the sharp
bound on the number of non-degenerate positive solutions of (6.6.1)) is siz.

The system (6.4.12)) appearing in Example of Section satisfies the hypotheses of
Theorem [6.57] and has six non-degenerate positive solutions. Therefore, if Theorem holds

true, then six is a sharp bound on the number of non-degenerate positive solutions of .

In what follows, we assume the hypotheses of Theorem As in the previous section, vg
denotes the origin of £. Let Ay and Ay (resp. 71 and 72, T} and T») denote the Newton polytopes
(resp. dual subdivisions, tropical curves) associated to the first and second equations respectively.

It follows from Corollary [6.40] that since coef(a;) = coef(b;) for i = 0,2, the system does
not have a positive solution with valuation at a non-transversal intersection point of type (II).

We now show why Theorem is trivial if both coef(ag) and coef(aq) are positive. Note that
the reduced system of with respect to vy will not have positive solutions, and if 77 and
T5 intersect non-transversally at a cell of type (I), such a cell does not contain the valuations of
positive solutions of (6.6.1]). Moreover, Theorem [6.15]in Section [6.3shows that has at most
three positive solutions with valuations transversal intersection points of 77 and T5. Therefore,
if there does not exist a non-transversal intersection point of type (III) in the relative interior
of a 1-cone of &£, then has at most three positive solutions. Otherwise, if there exists a
non-transversal intersection point v # vy of type (III), then Remark and Lemma in
Section show that has at most three positive solutions.

Using similar arguments as in Section in what follows we assume that

coef(ap) = —1 and coef(as) = 1.

Therefore, Lemma in Section shows that if there exists a non-transversal cell &; of type
(I) contained in Ly, then &; does not contain valuations of positive solutions of (6.6.1)). In this
section, the only cells of 77 N T, that may contain valuations of non-degenerate positive solutions

of (6.6.1) are the following.

- Non-transversal cells of type (I) contained in Lo U Ls.
- Transversal intersection points in Ufzoéi.

- A non-transversal intersection point of type (III) contained in EO U Iil.
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The reason we omit the case where there could be an intersection point v of type (III) in Ly is
the following. Assume that 77 and T5 intersect non-transversally at a point v € |O_2 of type (III).
Then, since v is the intersection of a vertex in EQ of T and a vertex of T5 in the same 1-cone of
&, we have a/(mgng — mang) = B/(mans — manyg). Moreover, since T} and T5 do not intersect
non-transversally at a point of type (IIT) belonging to EO (see Lemma7 we have a/ng # /ny.

The highly non-degenerate normalized system

co + zfl + czzszéz + c;;tazfdzé*" = 0,
(6.6.2)
do + zfl + dngQzé2 + d4tﬂzk4 )
where coef(cy) = coef(dg) = —1 and coef(ca) = coef(dz) = 1, has the same number of non-

degenerate positive solutions as , and the associated tropical curves Ty and T intersect at
a point ¥ of type (III) contained in Ly. Indeed, divide the first and the second equations of
by ag and by respectively, and make the monomial coordinate change (y1,y2) — (21, 22) such that
Y™ = 222l and yi"y? = 2 for some integers k; > 0, ky and I > 0. One can easily check
that afly = B/ly, and thus T1 and T 5 intersect non-transversally at a pomt of type (III) contained
in LO Moreover, since is also highly non-degenerate, we get that L1 U L2 does not contain

non-transversal intersection points of type (III).

6.6.1 First case: 0 <a<f

The tropical curves 77 and 75 intersect non-transversally at the origin vy of £ and at three linear
components of type (I) denoted by &, for i = 0,1, 2 such that & C L;.
Recall that by Lemma in Section the polynomials

fo.r = coef (co)t?® + coef(cy)t12y"™2 — coef (az)t®y™* + coef(by)tPy™

mgng—mons m4n2—m2n4

and  fo, = ot — coef(a3)ty 2 + coef(b4) 72 ,

where ¢; 1= b; — a;, ; := ord(¢;) for i = 0,2, ¢ := coef(cy — ¢g) and § := ord(cy — ¢p), are
approximation polynomials of (6.6.1) for &, and &, respectively.

6.6.1.1 There exists a non-transversal intersection of type (III)

Here, we study the case where T7 and 75 intersect non-transversally at a point v of type (III)
contained in EO U Iil. Note that if v € Iii for some ¢ = 0, 1, then the vertices v and vy are endpoints
of &;. Let € C Ty NT, denote the intersection component €y U Ey U {v} U {vp}.

Lemma shows that has at most one non-degenerate positive solution with valuation
a transversal intersection point of 77 and T,. We want to prove the following result.

Proposition 6.58. The system (6.6.1) has at most six non-degenerate positive solutions with
valuation in €. Moreover, if (6.6.1]) has sixz non-degenerate positive solutions with valuation in €,
then (6.6.1]) does not have a positive solution with valuation a transversal intersection point of Ty
and Ts.

Since there exists a non-transversal intersection of type (III), Theorem becomes a conse-
quence of Proposition [6.58| given that the latter holds true.
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e First case: v € Lg. We have ny < nzg < 0. Indeed, the intersection point v belongs to Ly and
satisfies v = (0,a/ng) = (0, 8/n4) (since v is a common vertex of T} and of Ty). Therefore, we get
B/ny = a/ng < 0, and thus from 0 < a < 8, we get ny < nzg < 0.

Recall that T'g (resp. I'2) is the lower part of the convex hull of points in

{(0’70)7 (n2772)7 (’I’L3,0¢), (7?,4,,8), }

(resp.  {(0,0), ((m3ng —mansz)/na,a), ((Mmang —mang)/n2,8)}) .

Since ny < n3 < 0 < ne and «, 8,70,72 > 0, the lower hull T'y contains an edge e; C T
with endpoints (ng4, 3) and (ns,«), where e; has negative slope (see Figure for example).
Moreover, from «a/n3 = 3/n4, we deduce that the facial subpolynomial fél)(y) = — coef(az)y™ +
coef(by)y™ (which is associated to e1) is obtained from fo ,(t~*1y)/t*1, where \; = B/n4 and
u1 = 0. Therefore, by Corollary of Section if f(gl) has a positive root, it does not
correspond to a positive non-degenerate solution of with valuation in éo. Therefore, (;30
contains the valuations of at most two positive solutions of . Note that by Remark of
Section[6.4] the intersection point v is the valuation of at most two non-degenerate positive solutions
of , and recall that by Remark M of Section we have (‘032 contains the valuation of at
most two positive solutions.

From Subsection the number of positive solutions of with valuation vy is equal
to the number of positive solutions of the reduced system of

—L+y™ e+ ast®y s = 0
(6.6.3)
cot?? + ot 2y yn? — agtPyIyls 4 bytOyiytt = 0

with respect to vg, with ¢;t7 = b; — a;, ord(¢;) = 0 and 7; > 0 for ¢ = 0, 2.

We prove Proposition by analyzing the different cases for the system . Recall
Corollary and that by an edge of I'g and I's, we mean a line segment of these lower hulls
supporting only a binomial.

i) Assume that there exists only one element of the set {«, 9,72} that is equal to
min(a,¥p,72). Recall that the reduced system of with respect to vy has no real
positive solutions. If ((;30, 532 or {v} contains the valuations of at most one positive solution,
then € contains the valuations of at most five, and we are done.

Assume that has two non-degenerate positive solutions with valuations in each of
QOSO, 532 and {v}. Note that since there exist positive solutions with valuation v, the sys-
tem from Subsection shows that coef(as) coef(by) > 0. The two positive roots
of fo. (which are associated to two positive solutions of with valuation in éo) cor-
respond to two edges of Ty \ {e1} with negative slopes. Since ny < nzg < 0 < ng, we
have § > a > vy > 72 (see Figure on the left), and by Descartes’ rule of sign, we
get coef(cg) coef(ag) > 0 and coef(cz) coef(co) < 0, thus coef(cz) coef(az) < 0. Similarly,
since 0 < § < a < 8 and has two positive solutions with valuations in &2, applying
Corollary on fay, we deduce that mang — mong < mgng — mong < 0 (see Figure
on the right). Moreover, since ¢ = min(vp,y2) = 72, the coefficient ¢, appearing in fa;, has
the same sign as that of coef(cg). Therefore by Descarte’s rule of sign, the number of sign
changes of f>; is equal to one, thus a contradiction to having two non-degenerate
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positive solutions with valuations in ;. We deduce that (6.6.1) has at most five positive
solutions with valuation in €.

(m4n2n—2m2 ng , ,3)

(mzin'zn—zmzn-g ,(1)

es
. (0,70) (n2,72) b (0,0)

]
\

Figure 6.20: Examples of graphs I'g and I's for ngy < ng < 0 < ng and mgng — mang <
mang — meong < 0.

ii) Assume that 79 = 72 < a. Recall that the reduced system of (6.6.1)) with respect to

vo has at most one positive solution. Moreover, the lower hull 'y contains two edges
e1 and ey (corresponding to the facial subpolynomials — coef(as3)y™ + coef(bs)y™ and
coef(by)y™ + coef(cy) respectively) with negative slope, and a horizontal edge ez corre-
sponding to coef(cg) + coef(ca)y™ (see Figure [6.21). Therefore, only es may correspond to
a positive solution of with valuation in 0, and thus € contains the valuation of at
most siz positive solutions.

(n4, B)

(ng,a)
€3

(0,70) (n2,72)

Figure 6.21: An example of I'g for v = 12 < a.

Assume that this bound is reached. We prove that does not have a non-degenerate
positive solution with valuation a transversal intersection point of 77 and T5. Recall that
0 > 9. We have § = 79. Indeed, if 6 > 7o, then coef(cy) = — coef(cz), and the reduced
system of with respect to vy may be written as

=14y +yyy? = —1+yyy* =0, (6.6.4)

which does not have positive solutions. This is a contradiction to (6.6.1)) having six positive
solutions with valuation in €.
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Since €, contains the valuations of two positive solutions of (6.6.1)) (by assumption), all
edges of I'y have negative slope, and using similar arguments as in i), we have

MygNo — Many < Mzng — Maong < 0. (665)

The latter inequalities together with ny < ng < 0 show that the points (ms,n3) and (m4,n4)
belong to the region A of Figure [6.19] Moreover, since both « and 8 are positive, each of Ty
and Tb has a vertex v; and vq respectively in Ly. Lemma [6.44] shows that since v € Lo, the
curves T7 and 75 intersect transversally in at most one point p.

Assume that such an intersection p exists, and that p is the valuation of a positive solution
of , we prove that this gives a contradiction. Then by Lemma we have p €
Cy. Moreover, since coef(az) > 0, we deduce from Proposition that both coef(as)
and coef(by) are negative. Descartes’ rule of signs applied to the polynomial of
Subsection associated to the reduced system with respect to v shows that
Malta 7 a3 my > 0.
g — N3

Indeed, since has two positive solutions and m; > 0. Therefore, from ny < n3 we
get mgng — myng < 0, and thus comparing the coordinates of v; to those of vy using the
inequalities in gives that the first coordinate of vy is smaller than that of vy (See
Figure on the right). Moreover, the inequality mgns — mqnsz < 0 shows that fixing
(ms,ng) in the region A of Figure the point (mg4,n4) is contained in region A; of
Figure However, under these constraints on (ms,n3), (mq, n4), v1 and ve, the tropical
curves 17 and Ty do not intersect transversally at a point contained in the 2-cone Cy, a
contradiction.

(ma,n2)

(mq,0)

Figure 6.22: The region A; with respect to the triangle [(0,0), (m1,0), (m2, n2)].

iii) Assume that a = vy < min(ye, 5) (we omit the case where @ = v < 8 < 7 since it is

similar). Recall that the reduced system with respect to vg has at most two positive
solutions. The only edge of I'y having a negative slope is e, thus QOSO does not contain
valuations of positive solutions of (see Figure left). Moreover, since 6 = v9 = a,
the lower hull T'y contains at most one edge with negative slope (see Figure right).
Therefore, there exists at most five solutions of with valuation in €.
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(man )”—zm 4 3)

€ / (n2,72)
»

(ng, a) (0,7) (man ,;m-xu ) (0,5)

(n4, B)

Figure 6.23: Examples of I'g and I'y for 79 = a.

iv) Assume that a = 79 = 72 < 8. Recall that the reduced system with respect to vy
has at most three_positive solutions. The lower hull Ty contains only e; and one horizontal
edge (See Figure on the left), and thus ((;30 does not contain valuations of positive solu-
tions of . Recall that by Lemma since v € Ly, if 71 and T intersect transversally,
then this transversal intersection point belongs to Co. Note that since a > 0, if T3 does not
have a vertex in Iil U Eg, then 77 does not have an edge contained in Cy, and thus 77 and
T do not intersect transversally at a point in C5. The number of edges of 'y with negative
slope depends on whether ¢ is equal to 7y or not. We distinguish two cases for § and deduce
that if has six positive solutions with valuation in €, then 77 does not have a vertex
in either Ly or Ls.

Assume first that 6 = 7. We deduce from f5; that the lower hull I's contains one horizontal
edge and at most one other edge with non-zero slope (see Figure on the center). There-
fore has at most one positive solution with valuation in &2. This means that the maxi-
mal number of positive solutions of with valuations in the intersection component € is
equal to six. Assuming that this bound is reached, we get that the reduced system
with respect to vy has the maximum of three positive solutions. Therefore, since such a
system is supported on a circuit, its support Wy := {(0,0), (m1,0), (ma,n2), (ms,ns3)},
satisfies the following. The triangle A,,, formed by any three distinct points of Wy does not
contain the remaining forth point of Wy. Since n3 < 0, the latter restrictions mean that
(ms,n3) is contained in region F' of Figure Therefore, since a > 0, the tropical curve
T, does not have a vertex in Iil U Eg (see Figure on the right), and thus no transversal
intersection points.

Assume now that § > ~9. Then (6.6.1) may have two positive solutions with valuation in
&5. Moreover, if this bound is reached, then msns — mang > min(0, myng — mony). Indeed,
since otherwise I's will not be optimally sloped (c.f. Figure for example).
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(n3,0) > (0.7) (n2,72)

(s nzn

s ) .
\/ (©.9) (0,9)

L()

Figure 6.24: From left to right: Ty, I'y and T} for o = 9 = 2 < B.

A

(m nﬂgn—zm-;n . ﬁ) )

(7”,: Vl'n—zlnﬂ ng s (l) . .
(manz—mans o)

\
\)

Figure 6.25: Examples where I's is not optimally sloped for a = v9 = 72 < 5.

Note that § > 79 means that we have coef(co) = — coef(cz), and thus the reduced system
=1+ y"ys? + y" = coef(co) + coef(ea)yy"?ys? — coef(as)yyys® =0

with respect to vg has at most two positive solutions. Moreover, a non-degenerate positive
solution («, B) of the latter system satisfies

—1+a™ +C§L2a(m2n3—n2(m3—m1))/”3 =0 (666)

with coef(asz) < 0 and c3 = (—1/ coef(az))'/™s. Since has six positive solutions with
valuation in € (by assumption), each of {vg}, {v} and ¢, contains the valuations of at most
two positive solutions. Moreover, since my > 0, by Descartes’ rule of signs applied to ,
we we have (mans — na(mg — mq))/ns < 0, and thus maons — na(mz — my) > 0. The latter
inequality together with mgns — maong > 0 show that (ms,ns) belongs to the region F;
represented in Figure [6.26] Therefore, since a > 0, the tropical curve T} does not have a
vertex in El U IO_2.
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(m2,n2)

Figure 6.26: The region F.

This concludes the proof of Proposition [6.58 in the case where v € L.

e Second case: v € L;. Recall that the reduced system with respect to v is

Yyt + Y1 ys? + coef(asg)yy P ys® = yi™t + y1 2 ys? + coef(ba)yyyst = 0. (6.6.7)
Note that this system has positive solutions only if each of coef(as) and coef(bs) is negative.
Similarly to the the case where v € Ly, we make a simple analysis on fo, f2; and on the reduced
system of with respect to vy. This analysis is based on the inequalities between «, 5, v
and 72. The cases from i) to iv) are the same that been considered in the case where v € Ly. The
entries in the following table represent the maximum number of positive solutions of with
valuation in the associated cell of T7 N T5.

Intersection Locus | i) | ii) | iii) | iv)
{vo} 0] 1] 2 [3]2
¢ 32 2 [1]1
¢, 221 [1]2

We deduce that has at most five positive solutions with valuation in €\ v. Assume first
that T7 and Ty intersect transversally at a point p and that p is the valuation of a positive solution
of . Lemma shows that p € Cg, thus from Proposition we have that coef(as) > 0
and coef(by) > 0. Therefore has no positive solutions, and consequently has at most
five positive solutions in €.

Assume now that has two positive solutions (thus coef(as, coef(bs)) < 0, and if T} and
T, intersect transversally at p, it is not a valuation of a positive solution) and that the component
€\ {v} contains the valuations of five positive solutions. We prove that these assumptions give
a contradiction. Since the system has five positive solutions with valuations in €\ {v},
then 'y and I's are both optimally sloped. Therefore, from 0 < o < 3, we deduce the inequalities
ng < ng and myng — maong < msng — maons. Recall that the vertices of 77 and 75 in L; have first
coordinates

an n
2 and Bng

(mg —mi)ng — (ma —mq)ng (mg —mi)ng — (ma —mq)ny
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respectively, thus since v € Ly is a common vertex to each of 77 and 75, the latter first coordinates
are equal. We deduce from 0 < o < 8 that

mang — Mang — (M3gne — mang) > my(ng — ny).

This is a contradiction to mi1 > 0, ny < ng and Mmyng — Mong > M3ngy — Mang.
This proves Proposition [6.58|in the case where v € L;.

6.6.1.2 The origin of the base fan is the only intersection point of type (III)

Similarly to the the case where v € Ly, we make a simple analysis on fo+, f2+ and on the reduced
system of with respect to vg. This analysis is based on the inequalities between «a, 3, Yo
and 3. The cases from i) to iv) are the same that been considered in the case where v € L.
The entries appearing in the following table represent the maximum number of positive solutions
of with valuations in the associated cell of T3 N Tb.

Intersection Locus | i) | ii) | iii) | iv)
{vo} 01 ] 2 [3]2
& 32 2 [1]1
¢, 221 [1]2

Assume furthermore that (6.6.1]) has the maximal number five of positive solutions with valu-

ations in &0 U &2 U {wvo}. Then I'y and T’y are both optimally sloped, and thus, since a < 3, we
have
ng <ng and mgng — Mang < M3No — Man3. (6.6.8)

These assumptions give the two following results.
Lemma 6.59. The tropical curve Ty has a vertex on Ly iff To has a vertex on Ly.

Proof. We argue by contradiction. Assume first that 75 has a vertex vy in Ly and T3 has no vertex
in the same 1-cone. Then the points (ms,ng) and (mg4,n4) are situated on different sides of the
line L containing the points (0,m1) and (m2,n3) as shown in Figure [6.27]

\\\ (ma,n2)
" o (ma,nq)

(0,0) (mq,0)

Figure 6.27: The point (m4,n4) is not on the same side of L as (mg, n3)

This disposition gives the inequalities

(mg —my)ns — (ms —my)ng >0 and  (mo —mq)ng — (Mg —mq)ng <0,
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and thus we get mgng — mang — (myngy — mony) < mq(ng — nz). Moreover, since m; > 0 and
ng < ng, we get mana — mang < Mang — many, a contradiction to (6.6.8).

Assume now that T has a vertex vy in Ly and T5 has no vertex in the same 1-cone. The dispo-
sition of (mg,n3) and (my4, ng) with respect to L is the opposite of that represented in Figure
Therefore, the point (mg,ns3) belongs to C' U D U E represented in Figure (the point (ms,ns3)
cannot be situated in G since otherwise T7 would not have a vertex v, # vg). Moreover, the only
way to have a transversal intersection in C; and Cy is for T3 to have a vertex on Ly and Ly, thus
(my4,ny) belongs to the region A of Figure It turns out that if (ms,ng) belongs to any of
the three regions C, D and FE, it cannot produce a transversal intersection point in C; and Cs

simultaneously (see Figure [6.28)).

Figure 6.28: The left side represents 71UT5 when (ms, n3) € E and the right side represents
T1 U T, when (ms,n3) € D.

O

Lemma 6.60. If T} has a vertex vy € El and Ty has a vertex vy € Iil, then the first coordinate of
vy s smaller than that of vs.

Proof. Assume that the first coordinate of the vertex v, € El of Ty is greater than that of vs € Iig
of Ty, we prove that this gives a contradiction. Then these first coordinates satisfy
ang Bna

>
na(ms —mq) —nz(mg —mi) = na(ma —my) — na(mg —mq)

> 0.

Since 0 < o < 8 and my > 0, we have
na(mg —my) — ng(ma —mq) > na(mg — my) — ng(me —my) > 0.
The latter inequality induces mgns — many > mgns — mang, a contradiction to (6.6.8)). O

Recall that by assumption, the system has five positive solutions with valuations in
530 U Qoig U {vo} and prove that this gives a contradiction. Assume furthermore that the curves T
and T intersect transversally at p; € C; and py € Co. We consider two cases.
e First case: Assume that 77 has a vertex v; € L1. Then by Lemma @ the tropical curve Ty
has a vertex vy in Ly, and thus by Lemma [6.60] the first coordmate of vy is smaller than that of
v9. Therefore, the transversal intersections p; € Cl and pg € Cg exist only if the point (ms,n3) is
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contained inside the triangle (m1,0), (mao,ns) and (mg4,n4) (see Figure [6.29). Such a restriction
gives the inequalities

(m3 —my)ng — (mg —my)ng <0 and (m3z —ma)(ng — ng) — (Mg — ma)(n3 —ng) > 0,

, from which we deduce myngy — mang — msns + mansg > my(ns —nyg). A contradiction to (6.6.8]).

(ms,ng)

(mag,ng)

Figure 6.29: Location of (m3,n3) in order for 71 and 75 to have two transversal intersection
points.

e Second case: Assume now that 7} does not have a vertex in L;. Then Lemma [6.59] shows that
T> does not have a vertex in L;. Note that since p; € C; and ps € Csy, each of T7 and 75 has
one edge in each of these 2-cones, and thus both (mg,n3) and (my,n4) belong to the region A
represented in Figure [6.19] Therefore, we have the following inequalities

maNe — MaNyg < M3Ng —Mmang <0 and ny < ng < 0.

In what follows in this subsection, we make a case-by-case study on the reduced system with respect
to vg. We prove in each one of the following cases that cannot have five non-degenerate
positive solutions with valuations in QOEO U ég U {wo}, and two non-degenerate positive solutions,
each with valuation in p; and ps. Recall that by assumption, each of I'g and I's are both optimally
sloped.

i) Assume that there exists only one element of the set {«, yo, 72} that is equal to min(«, 7o, 72).
Recall that the reduced system of with respect to vy has no real positive solutions.
Since Ty is optimally sloped, we have 75 < v < o < 8 (T'g in this case looks similar to
what is represented in Figure [6.20 where the only difference is that the dotted line does
not intersect the origin of the axis). Recall that ny < ng < 0 < ng and by assumption both
coef(ag) and coef(bs) are negative, thus by Descartes’ rule of sign applied to fy ¢, we have
coef(cg) > 0. Therefore, using the same rule on fs;, we deduce that the latter polynomial
has at most one positive solution. Indeed, since myngs — mong < mgns — mong < 0 and
¢ = coef(cz) > 0. We conclude that has at most one positive solution with valuation
in ég, and thus the latter system has at most four positive solutions with valuations in
EoUEy U {v}, a contradiction.
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i)

iii)

(n4, B)

Assume that 79 = 72 < . Recall that the reduced system of ( see the sys-
tem in Subsection with respect to vy has at most one positive solution.
Since I'y contains an horizontal edge, each of QOEO and QOSQ contains at most two positive
solutions. If coef(cg) = — coef(cq), then the reduced system of has no positive so-
lutions and Qofo U & U {vo} has the valuations of at most four, and we are done. Assume
that the reduced system of has one positive solution, then coef(cg) coef(cy) < 0.
Moreover, if Qofo (resp. Qofg) contains the valuations of two positive solutions, then in or-
der for the two binomials of fy; (resp. f2.), associated to the edges with negative slope
of Ty (resp. T'3), to have non-degenerate positive solutions, we have coef(cy) < 0 (resp.
¢ = coef(cg) — coef(cp) < 0). Indeed, since myng — mong < mgng — mong < 0 and
ng < ng < 0. Therefore coef(ca) < coef(cy) < 0, a contradiction to coef(cq) coef(cz) < 0.

Assume that & = 79 < 8 < 72 (for the case where « = v < 8 < 7 we proceed with
the same type of arguments as in iii) to find the same contradiction). Recall that the
reduced system of (see the system in Subsection with respect to vy
has at most two positive solutions. Since ny > 0 and o = 79 < 2, we have that I'y con-
tains only one edge with a negative slope (see Figure . Moreover, since § = 7 and
mane — Mony < mzng — maong < 0, then also I's contains only one edge with negative
slope. Therefore éo U &2 U {wvo} contains the valuations of at most four positive solutions,
a contradiction.

Assume that o = 79 = 72 < 8. Recall that the reduced system of with respect to vy
(see (6.4.18) of Subsection has at most three positive solutions. This system is sup-
ported on a circuit, where the point (0,0) is contained in the triangle with vertices (mq,0),
(mag,n92) and (ms,ns). Indeed, since from n3 < 0 and msny — maong, the point (ms,ns)
is contained in region A represented in Figure Therefore, has at most two
positive solutions. Moreover, the relation a = 79 = 72 < § shows that each of I'y and I'y
contains only one edge with negative slope such that the associated facial subpolynomials

is a binomial (see Figure[6.30). Therefore, € contains the valuation of at most four positive
solutions of (6.6.1]), a contradiction.

(m. ng—maony ‘3)
na sk

(n3, @) (0,70) (n2,72) (m n'z":m'zu‘ L)

Figure 6.30: Examples of ['g and I'y for a = vy = v < B.
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We conclude that Theorem [6.57]is proved for 0 < o < f3.

6.6.2 The case a=0<p

The tropical curve T; has only one vertex vg, thus this vertex is the only non-transversal intersection
point of type (III) of 77 and T5. Moreover, the reduced system with respect to vg is

=14y +yys® +coef(az)yys® = —1 +y" + 41" yy* =0

and does not have non-zero solutions. Therefore, the valuation of any positive solution of
is either a transversal intersection point of T} and T» or it is contained in a cell of type (I) that
belongs to a 1-cone of £. From a = 0, we deduce that 77 and 75 intersect transversally in at
most two points. Indeed, this comes from applying Lemma [6.22) on T since T has at most two
edges different from any 1-cone of £ (see Figure . Therefore, since each fo; and fo, has at
most three and two positive solutions respectively, the system cannot have more than seven
positive solutions.

Figure 6.31: If (my4,n4) belongs to the grey area, then 77 and T do not intersect transver-
sally at two points.

Assume that the latter system has seven positive solutions. We show that this gives a con-
tradiction. Then T; and T3 intersect transversally at two points and €y (resp. €;) contains the
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valuations of three (resp. two) non-degenerate positive solutions of . This shows that 'y
and T's are both optimally sloped, and thus, since a < min(yg, 2, 3), we have nz > max(ng,ng)
and mgng — mang > max (0, myny — mony). Therefore, the point (ms3,n3) belongs to the region
D 1 represented in Figure (see page . This gives that the tropical curve 77 has one edge
belonging to each of (021 and 2 (see Figure . Hence, Proposition implies that, since
coef(az) = 1 and T intersects Ty at two transversal points which are valuations of positive solu-
tions of (6.6.1)), we have coef(az) < 0 and coef(bs) < 0. Therefore, Descartes’ rule of sign applied
to fa,+, which has three positive solutions, shows that 0 < mana —mang < msngs —mens. Then we
get § > B > a, and from yg > v2 > > a, we deduce that ny < ny < ng. Fixing (m3,n3) in the
region Dy ; represented in Figure we deduce that (mg,n4) belongs to the grey region shown
in Figure Moreover, since the first coordinate of the vertex vo € Ly of Ty is positive (see
Figure , the curves T7 and T5 intersect transversally in at most one point, a contradiction.

6.6.3 The case a <0 < f.

Since a0 < 0, the tropical curve T; does not have a vertex at the origin vy of £, and thus there does
not exist a non-transversal tropical intersection point in this origin.

Assume first that 77 and T intersect non-transversally at a cell &; of type (I) in Lo and that
the latter curves do not intersect non-transversally in a cell of type (I) in Ly. If there exists a
non-transversal intersection point v contained in any 1l-cone of £, then Theorem is proved
for « < 0 < . Indeed, Remark of Subsection shows that the reduced system with
respect to v has at most two positive solutions. Moreover, Lemma from the same Subsection
shows that there exists at most one transversal intersection p. Therefore, the system has at
most one (resp. two, three) positive solutions with valuation in p (resp. v, ((;30), and we are done.
Theorem [6.57] comes as a consequence of Theorem [6.15] also in the case where there does not exist
such v.

In what follows in this Subsection we assume that 77 and T5 intersect non-transversally in two
cells &y C Lo and €5 C Ly of type (I).

6.6.3.1 There exists a non-transversal intersection of type (III)

Then this non-transversal intersection point v of type (III) is contained in the 1-cone L. Indeed,
since otherwise one of &g or &; would not exist (see Figure for example).

Figure 6.32: When o < 0 < 3, if v € Lo, then there does not exist a cell of type (I) in L.

Since v € L; is the common vertex of T7 and 75 that has a positive first coordinate, and
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a <0< B, we deduce
no(ms —my) —ng(mg —my) <0 and mno(my —my) — ng(me —my) > 0.
Computing the difference we get
mang — Mang — (Mgne — mang) > my(ng — ny), (6.6.9)

and thus, since m; > 0, we have ng < ng = mgng — mong < myne — Mmaonyg. Moreover, since
a <0< B, if ng < ng (resp. mang — mang < Myng — Many), then (’030 (resp. (’032) contains the
valuations of at most two (resp. one) positive solution. Indeed, the lower hull Ty (resp. I'z) has at
least one edge with non-negative slope (see Figure for an example), and thus is not optimally
sloped.

(TL4.B) m‘rtz mznx j

72) / \ /' (07 6)

(ng, @) (mana—mans a)

\

Figure 6.33: Examples of ['g and I'y not being optimally sloped for a < 0 < 3.

Therefore, &OUéQ cannot contain the valuations of more than four positive solutions. Lemma/|6.44
shows that there can exist at most one positive transversal intersection that can be contained only
in é().

Assume first that 77 and T3 intersect transversally at a point p € (0:0 and has a positive
solution with valuation p. Then, since coef(ag) = —1, Proposition shows that both coef(ag)
and coef(by) are positive. Therefore, the system

Py yn? + coef (ag)yy P yy® =y 4 yi " ys? + coef (ba)yy Yyt = 0. (6.6.10)

does not have positive solutions, and thus ) has at most five positive solutions.

Assume now that both coef(as) and coef(b4) are negative. Then by Proposition [6.27] u the
system (6.6.1)) does not have a positive solution with valuatlon in Co Moreover, the system (|6
has at most two positive solutions. Therefore, the system (6.6.1]) has at most siz positive Solutlons.

6.6.3.2 There does not exist an intersection point of type (III)

Recall that by assumption, we have &, C Ly and €; C Ly. This means that, since a < 0, the
tropical curve T has one vertex in Ly and one vertex in Ly. Therefore the point (mg,ng) is
contained in the region D U G represented in Figure [6.19] where ng > 0 and mgny — mong > 0.
If has more than siz positive solutions in total, then T; and T5 intersect transversally in at
least two points. Indeed, since the only other solutions have valuations contained in &o U ég, where
the latter contains the valuations of at most five non-degenerate positive solutions of .
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We prove Theorem [6.57 by contradiction. Assume that (6.6.1)) has five positive solutions with
valuations in QSO U Qfg and two positive ones with valuations transversal intersections p; and ps.

Recall that coef(ag) = —1 and coef(az) = 1. Then from Proposition [6.27} we have p; € C; and
p2 € Cq, so that both coef(az) and coef(by) are negative. Since 532 contains the valuations of two
non-degenerate positive solutions of (by assumption), both edges of I's have negative slopes.
Moreover, Descartes’ rule of sign applied to fs; shows that since coef(as) coef(bs) > 0, we have
0 < myng — manyg < mgng — maong and thus 6 > f (see Figure . Note that, since 630 contains
the valuations of three positive solutions of , all the edges of I'y have negative slopes, and
thus 79 > 72 (recall that ne > 0). From a < 0 < 8 < 72 < 79, we deduce that 0 < ny < ng < ns.

(7114 nzn;mzw , ﬂ)

»

NS (s.0) ~N i

many—man.
( )
ne

Figure 6.34: Examples of optimally sloped I'g and I's for o < 0 < .

Figure 6.35: If (my,n4) belongs to the grey region, then 77 does not intersect T at two
transversal intersection points.

We deduce that the points (ms,ng) and (ma4,n4) are contained in the region D 1 represented
in Figure (see page [143)). Indeed, since for i = 3,4, we have 0 < ns < n; and m;ny — man; >
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0 > my(n2 — n;). Moreover, since o < 0 and 8 > 0, the tropical curve T; does not have a vertex
in Ly, and the only vertices of Ty are vy (the origin of £) and ve € L;. Recall that ny < n3 and
Mang — Mang < Mang — Mang, thus fixing (mg, n3) in the region D ; represented in Figure
the point (my, n4) belongs to the grey region appearing in Figure m We deduce that if (my4, ny)
belongs to the grey region, the curves 77 and 75 do not intersect transversally in each of C; and
C,, a contradiction.

6.6.4 The case a <0 and =0

The tropical curve Ty has only one vertex in the origin of £, thus 77 and T, do not intersect non-
transversally in points of type (III). We prove Theorem m 6.57| by contradiction. Similarly to the
case a = 0 and 8 > 0, we assume that - ) has seven p051t1ve solutions such that two of them
have valuations which are transversal intersections and @0 (resp. 62) contains the valuations of
three (resp. two) non-degenerate positive solutions. Since each of I'y and I'y are optimally sloped,
we have ng < ng < ng, v > 72 > B > a and 0 < myng — mony < mgng — mang. Theorem [6.57]
then is proved by applying similar arguments used in the case where & = 0 and 5 > 0.

6.6.5 The case a < [ < 0.

Using the same arguments as in the case a < 0 < 3, we assume in what follows in this subsection
that 77 and T, intersect non-transversally at cells & € Ly and €y € Ly of type (I). Since &
is a base fan of T} (resp. T») and a < 0 (resp. [ < 0), the latter assumption means that
Ty (resp. T3) has a vertex on each of Ly and Ly. Therefore, we have 0 < min(ns,ng) and
0 < min(mgna — mans, Mang — Many).

6.6.5.1 There exists a non-transversal intersection point of type (III)

We distinguish two cases for a non-transversal intersection point v of type (III).

e First case: v € Ly. Then, both (ms,n3) and (m4,n4) are contained in the region G represented
in Figure Indeed, since both « and 8 are negative and &, C LO, &, C L2, v E L17 each of Ty
and Ty has a vertex in the relative interior of each 1-cone of &£.

Theorem “ 7| becomes trivial if coef(as) or coef(by) is positive. Indeed, otherwise the reduced
system with respect to v would not have positive solutions. Moreover, by Lemma
the curves Tl and T intersect transversally in at most one point. Therefore, since Qfo (resp. QEQ)
contains the valuations of at most three (resp. two) positive solutions, the total number of positive
solutions of is at most siz.

Assume that both coef(a3) and coef(by) are negative. In what follows, we assume that
has more than siz positive solutions and prove that this gives a contradiction. Lemma [6.44] shows
that if 77 and T5 intersect transversally in a point py (which is the maximal number of such inter-
section points), then pg is contained in Cy. However Propositionshows that since coef(as) < 0,
coef(by) < 0, coef(ag) = —1 and coef(by) = —1, this point pg is not the valuation of a positive so-
lution of . Therefore, the only possible way for to have more than six non-degenerate
positive solutions, is for it to have seven non-degenerate positive solutions satisfying that &0 (resp.
&2, {v}) contains the valuation of three (resp. two, two) positive solutions. This shows that
T'yg and I's are both optimally sloped, and since a < f < 0, we have 0 < ny < ngy < n3 and
0 < mang — many < mang — mong. However this contradicts the fact that both of (ms,n3) and
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(m4,n4) are contained in the region G represented in Figure [6.19) and we are done.

e Second case: v € Lg. We have nga = n3f (a vertex of T} coincides with a vertex of Ty, both
in Eo), and since a < 8 < 0 and 0 < min(ns,n4), we get 0 < ny < ng. Moreover, since both vy and
2 are positive, from Remark [6.36] the lower hull T’y contains an edge e; adjacent to the points
(ng, B), (ns,a), and with negative slope (c.f. Figure .

(0,70) (0,70)
o (M2:72)

(n2,72)

Figure 6.36: Examples of I'g for a < 5 < 0.

The facial subpolynomial fél)(y) = —coef(ag)y™ + coef(by)y™ (which is associated to e;)
is obtained from fo (¢t~ *1y)/t"t, where \; = B/ny4 and p; = 0. Therefore, by Corollary of
Section if yo is a largely ordered positive root of fy,, then coef(yo) is not a positive root
of fo(l). This shows that &, contains the valuations of at most fwo positive solutions of (6.6.1).
Moreover, if the latter system has two positive solutions with valuations in (‘030, then 0 < no < ngy.
Indeed, otherwise the point (ns,72) is not a vertex of Ty, or Iy has an edge with positive slope
(c.f. Figure the center and right).

Recall that since v € Eo, if the reduced system with respect to v has positive solutions, then
their number is equal to that of the positive ones of

mgng—mgygns

—1+y™ 4dyy s =0, (6.6.11)

Note that by Lemma @ the curves T7 and T5 mterbect transversally in at most one point, and
if such intersection point exists, it is contained in Cg We assume that (6.6.1)) has more than
siz positive solutions and prove that this gives a contradiction. Then has siz positive
solutions with valuations in € U & U {v} (which is the maximum number) and one positive
solution with valuation a transversal intersection p € &2 We deduce from the latter condition and
Propo&twn“that both coef(a3) and coef(by) are negative. Moreover, since a < 8 < 0 and each
of QEO and (’32 contains the valuations of two positive solutions (which is the maximum), we deduce
0 < my <ng <ngand 0 < myny —manyg < mang — mong. Since dz has the same sign as coef(a3)
(c.f. (6.4.25)), and has the maximal number two of positive solutions, by Descartes’ rule
of signs we have (msng — mang)/(ns — n3) > 0, which together with 0 < ny < ng implies that

mang — mang < my(ng —ng) < 0. (6.6.12)

Therefore, the points (ms,n3) and (my4, n4) are contained in the region D; ; represented in Fig-
ure [6.37] thus fixing (ms,n3) in the region D; 1, we deduce that (ma4,n4) belongs to the region
D 5 represented in Figure
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(m3,n3)

(0,0) (0,0)

(m1,0) (m1,0)

Figure 6.37: On the left: Region D1 1, and on the right: Region D1 .

Therefore, if there is a transversal intersection point in Co, then the first coordinate of the
vertex vy € Ly of T} is bigger than that of the vertex vy € Ly of Ty (See Figure [6.38]).

Figure 6.38: The curves T; and T5 for 0 < a < f.

This means that s f o < fmm. Finally, recall that any, = fng, therefore we get
mang > myng, a contradiction to (6.6.12)).

6.6.5.2 There does not exist an intersection point of type (III)

Assume that has more than six positive solutions, we prove that this leads to a contradiction.
Then it has five positive solutions with valuation in éo u ég (which is the maximal number) and
T1, T5 intersect transversally in two points p; and ps so that each one is the valuation of a positive
solution. Since coef(ag) = coef(by) < 0 and coef(az) = coef(by) > 0, Proposition shows that
p1 € Cy and P2 € Co.

Recall that 0 < min(ns,n4) and 0 < min(mgngs — mang, mane — Mang). Since a < f < 0 <
min(yp,v2) and each of &0 and &2 contains the valuations of respectively three and two positive

solutions of (6.6.1]), we have

0<no<ng<ng and 0<myng —maong < MmzNg — Man3. (6.6.13)

Indeed, since each of T'y and I's are optimally sloped (see Figure for an example).
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(0 5) i\

(7”.1”'3”—2”12]11 ,ﬁ)

\J
\

(ng, a)

(nl;yzzn—znzﬂw;g , (‘t)

Figure 6.39: The graphs I'g and I's, having three edges with negative slope for 0 < a0 < .

Therefore, from Remark of Subsection [6.4.1} the lower hull T'y (resp. T'g) has an edge é;
(resp. e1) with negative slope na(a— 3)/ ((mg — ma)ng — (n3 — ng)ms) (resp. (a—fB)/(n3 —nyg)).
The facial subpolynomial fél)(y) (resp. fél)(y))7 which is associated to é; (resp. ej), is obtained
from fo (= My)/thr (vesp. fo.(t~ y)/th), where

;\1 _ (a— B)ny and  fig =
(m3 — ma)ng — (n3 — na)ms

(msng — mang)a — (Mang — mang) B

(m3 — m4)n2 — (n3 - n4)m2

(resp. A1 = (@ — B8)/(ng — ng) and p; = (n38 — nga)/(ng — nyg)). Moreover, since all roots of
for and fo, are largely ordered, we have that both p; and fi; are positive. From o < 8 < 0,
w1, mug > 0 and the inequalities in ((6.6.13)), we deduce the inequalities

g<£ and a < p

. (6.6.14)
ns Ny ms3ng — Mang mang — Maly

Also from the inequalities appearing in , the curve Ty (resp. T») has two vertices vy € IO_O
and 77 € Iig (resp. vo € EO and ¥, € Eg) Therefore, from the inequalities of , the second
coordinate of vy is smaller than that of the vertex v, and the first coordinate of the vertex 0; is
smaller than that of the vertex 0o (see Figure .

Moreover, from inequalities appearing in (6.6.13), we deduce that the point (ms,n3) belongs
to the region D;; of Figure [6.37} and that fixing the latter point in the region D; j, the point
(my4,n4) belongs to the grey region represented in Figure However with (mg4,n4) anywhere
in the latter region, T and T3 do not intersect transversally at more than one point (see right side

of Figure for an example).



145 CHAPTER 6. CONSTRUCTING POLYNOMIAL SYSTEMS

(ma,n4)

(m3, n3)

A (1, —ma/ng)

0 a-8\__,
T ng —ny

Figure 6.40: If (my4,n4) belongs to the grey region, then the curves 77 and T» intersect in
at most one transversal point.

6.6.6 The case a =< 0.

The lower hulls 'y and I's have one horizontal edge each, and thus &0 U éfg contains the valuations
of at most three positive solutions. Therefore, applying the same arguments as in the case where
a < B <0, we deduce Theorem [6.5

6.7 Proof of Theorem (part 2).

Consider the highly non-degenerate normalized system

|
o

aop + 1"t + a2y yy” + ast®yPyy®
(6.7.1)
bo + yi™t 4 boyys? + batPyMyst = 0.

In this Section, we prove the following result.

Theorem 6.61. If af # 0, coef(ag)/ coef(by) # coef(az)/ coef(by) and coef(a;) # coef(b;) for
i=20,2, then (6.6.1) cannot have more than siz positive solutions.

Since coef(a;) # coef(b;) for i = 1,2, no positive solution of can have valuation in a
non-transversal cell of type (I). Indeed, if 77 and T intersect non-transversally at a cell &; of
type (I) contained in, say Lo, then the reduced system with respect to &g is coef(ag) + yi™* =
coef(by) + y7"* = 0, which does not have any solutions. Therefore, the valuation of each positive
solution is contained in one of the following.

- Non-transversal intersection point of type (III), which can either be vy or v € L; for some
ie{0,1,2}.

- Non-transversal intersection point of type (II).

- Transversal intersection point.

In what follows, we assume the hypotheses of Theorem |6.61
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6.7.1 Thecase 0 <a<f

Recall that there exists a non-transversal intersection point vy of type (III), which is the origin of £.
From Subsection [6.4.3] the inequalities on coef(a;) and coef(b;) for i = 0,2 show that the reduced
system of (| - with respect to vg has at most one positive solution. To prove Theorem
when 0 < a < f3, we distinguish two cases.

6.7.1.1 There exists a non-transversal intersection point of type (III)

Without loss of generality, we may assume that the non-transversal intersection point of type (III)
v # vg is contained in Lg. Recall from Subsection [6.4.4] that the reduced system with respect to
v is a system supported on four points, thus it has at most three positive solutions. Moreover,
the curves T7 and Ty intersect in at most two points of type (II) (see Figure for example).
Recall that by Lemma[6.44] the curves T; and T have at most one transversal intersection point.
Therefore, the system cannot have more than seven positive solutions, and if there exists
seven positive solutions, then their valuations are distributed in the following way. Three positive
solutions with valuation v € Lo, one positive solution with valuation vy, one p051tlve solution with
valuation a transversal intersection point p € Co (by Lemma 4l since v € LO) and two posmve
Solutlons where each has valuation a non-transversal intersection point of type (II) v; € L and
Vg € L2 respectively. However, these conditions cannot be met at the same time (c.f. Flgure
Indeed, since the existence of the intersection points v € Lo, v € L1 and Vg € LQ shows that
(m3,n3) (resp. (mg,ny4)) is contained in region A (resp. E) of Figure or vice-versa, and in
both cases, the intersection p would not exist.

U1

Figure 6.41: With (ms,n3) € A and (my,n4) € E, we have that 71 and T» cannot intersect
transversally.

6.7.1.2 There does not exist an intersection point of type (III)

Then there exists at most two (resp. three) transversal (resp. non-transversal) intersection points
(resp. of type (II)) and together with vg, this makes at most siz positive solutions of (6.7.1)).
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6.7.2 The case a <0< f

There does not exist a non-transversal intersection point at the origin of £. To prove Theorem [6.61
we distinguish two cases.

6.7.2.1 There exists a non-transversal intersection of type (III)

There can be at most three non-transversal intersection points of type (II) (see Figure on
the left for an example) and at most one transversal intersection (c.f. Lemma . Without
loss of generality, we may assume that the non-transversal intersection point of type (III) v is
contained in Ly. Assume that has more than siz positive solutions, we prove that this gives
a contradiction. The only way to have more than six positive solutions is to have seven ones such
that their valuations are distributed in the folloing way. Three positive solutions with valuation
v € Lo, one positive solution with valuation a transversal intersection point p € Cy (by Lemma

since v € Lg) and three positive solutions where each has valuation a non-transversal intersection
point of type (II).

The existence of such v and p means that 75 has a vertex in Ly and an edge in Co, and since
B > 0, we have that the point (mg4,n4) is contained in the region A or E of Figure say in E.
Moreover, since Ty and Ty have three non-transversal intersection points of type (II) and « < 0,
the tropical curve T7 has one vertex on each 1l-cone of £ (see Figure , and thus the point
(mg3,ng) is contained in the region G.

Figure 6.42: When o < 0 < 3, if T} intersects T» at five points of type (II), then the point
(ms,n3) belongs to the triangle [wo, w1, ws].

Since (mg,n3) € G and (my4,ny4) € E, necessary conditions to have three non-transversal intersec-
tion points of type (IT) is that the first coordinate of the vertex vy € Ly of T} is less than the first
coordinate of the vertex vy € Ly of Ty (see Figure . Indeed, otherwise there would only be
one non-transversal intersection point of type (II) in Ly (see Figure . However, if there exist
two non-transversal intersection points of type (II) in Ly, then there does not exist a transversal
intersection point in Cy (see Figure on the left). Conversely, if there exists a transversal inter-
section point in Cy, then there do not exist two non-transversal intersection points of type (II) in
Ly (see Figure on the right). The incompatibility of these conditions gives the contradiction.
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6.7.2.2 There does not exist an intersection point of type (III)

Since a < 0 < 3, the tropical curves 77 and T5 have respectively three and two vertices in the union
of the 1-cones of £. Therefore, there exists up to five non-transversal intersection points of type (II)
and at most two transversal intersection points (see Figure . Using similar arguments to the
case were there was an intersection of type (III), we deduce that the existence of five non-transversal
intersection points of type (II) implies that there does not exist two transversal ones.

Figure 6.43: The curves 17 and 75 intersect in at most three non-transversal points of
type (II).

6.7.3 The case a < <0

There does not exist a non-transversal intersection point at the origin of £. The proof of Theo-
remcomes easily whether there exists or not a non-transversal intersection point v of type (IIT).
Indeed, if there exists v which is the valuation of at most three positive solutions of , then
there exists at most two non-transversal intersection points of type (H) and at most one transversal
intersection point (Lemma. Otherwise, the number of transversal and non-transversal of type
(IT) intersection points is at most two and three respectively.
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Introduction (en Frangais)

L’un des probléemes fondamentaux en mathématiques est de résoudre des équations polynomiales
réelles puisque les systemes polynomiaux apparaissent naturellement et de maniére omniprésente
en mathématiques et dans beaucoup de ses applications. On les voit apparaitre dans des domaines
tels que la théorie du controle [Byr89], cinématique [BRI0], chimie [GH02, MFR16| et beaucoup
d’autres ou c’est principalement les solutions réelles qui comptent. Dans cette introduction, nous
donnons un bref apergu sur la résolution des équations polynomiales et nous précisons les résultats
principaux de cette these. Pour un exposé plus détaillé sur la résolution des équations polynomiales,
voir par exemple [Sot1I] ou [Stu02].

7.1 Polynomes en une variable

La théorie de Galois montre que pour un polynéme f a une variable en coefficients réels et degré
inférieur ou égal a quatre, il existe une formule générale qui détermine explicitement les racines
complexes de f en fonction de ses coefficients. Toutefois, cette affirmation est fausse si f a un
degré supérieur a quatre. Cela signifie que le calcul des racines des polynomes en degré élevé n’est
pas une tache facile. Néanmoins, il existe de nombreuses méthodes et des résultats consacrés en
particulier & ce probléme (voir par exemple [Stu02]). Selon le Théoréme fondamental d’algébre,
tout polyndéme f en une variable admet au moins une racine complexe. En outre, le nombre de ses
racines complexes (comptés avec multiplicités) est égale & son degré.

Malheureusement, le degré en général n’est pas la meilleure estimation du nombre de racines

100

réelles de f, par exemple 1 — x'"° admet 98 racines non réelles et seulement deux réelles. La regle

de Descartes [Des97], qui remonte & 1637, est 'un des premiers résultats qui donne une estimation
plus précise du nombre de racines réelles de f. Ecrivons les termes de f en respectant I'ordre
croissant de leurs exposants,

(&) = boa™® + bra®t 4 - 4 ba, (7.1.1)
oflbi;éOet ko <+ < kpn.

Théoréme 7.1 (Regle de Descartes). Le nombre r de racines positives isolées de f, comptées avec
multiplicités, est au plus le nombre de changements de signe de ses coefficients,

r<{i|1<i<m and b;_1b; <O0}.
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Théoreme [7.1] est toujours vrai pour les polynomes en une variable avec des exposants réels. La
conséquence immédiate de cette regle est que le nombre de solutions positives de f est majoré par
m. En outre, en remplagant = par —z et en appliquant Théoréme [7.1] au polynoéme obtenu donne
une estimation similaire pour le nombre de racines négatives de f. Par conséquent, le nombre de
racines réelles non nulles de f est inférieur ou égal a 2m.

Il est important de noter que la regle de Descartes, et donc la borne qui en résulte, est
indépendante du degré. Cela amene naturellement & la question de généraliser Théoreme
pour un systéme polynomial.

7.2 Systéemes polynomiaux creux
Considérons un systeme polynomial réel

filzi, .o zn) = = fulz1,...,20) = 0. (7.2.1)

En général, nous cherchons des solutions de dans le tore complexe (C*)™ puisque les so-
lutions dans les hyperplans de coordonnées sont des solutions dans des tores complexes de plus
petites dimensions de systemes tronqués. Une solution ¢ de est non dégénérée si les
différentielles en ¢ des fonctions définissant le systeme sont linéairement indépendantes. Les so-
lutions non dégénérées sont plus faciles & manipuler puisque leur nombre ne diminuera pas apres
“petite” perturbation des coefficients du systéme associé.

7.2.1 Bornes polyédrales

Notons d; le degré de f;. Le Théoréme fondamental de Bézout [Béz79] affirme que le nombre
de solutions complexes non dégénérées de est inférieur ou égal a d - - - d,,. En outre, cette
borne est exacte. Les systémes polynomiaux qui se produisent naturellement peuvent avoir une
structure particuliere, par exemple en termes de disposition des vecteurs d’exposants ou leur nom-
bre (voir [Sot1]). Cependant, une grande partie de ces données combinatoires est négligée lors de
I'utilisation du degré pour majorer le nombre de solutions complexes, et donc la borne de Bézout
peut étre grossiére. En effet, il existe des bornes qui dépendent de la structure polyédrale associée

au systeme polynomial.

A tout w = (wt,...,w") € Z", on associe un mondéme 2V € R[zfl, szl
polynéme de Laurent f € R[zE!, ..., 2F1] qui s’écrit ainsi

rn

]. Considérons un

f(z):= Z Cwz”, (7.2.2)
weWw
ou ¢, # 0 pour tout w € W. L’ensemble W est appelé le support de f. Le support d’un
systeme est 'union des supports de fi,...,f,. Le polytope de Newton de [ est
l’enveloppe convexe Ay, de W. Notons par Vol(A) le volume Euclidien d’un polytope A C R™.
Nous avons le résultat fondamental suivant di & A. Kushnirenko [Kus75].

Théoréme 7.2 (Kushnirenko). Si (7.2.1) admet W pour support, alors il a au plus n! Vol(A)
solutions isolées dans (C*)™, et exactement ce nombre si (7.2.1)) est générique parmi les systémes
de support W.

D. N. Bernstein [Ber75|] affina ce résultat en prenant les supports individuels en compte.
Désignons par W; le support du polynéme f; apparaissant dans ((7.2.1). La somme de Minkowski
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des enveloppes convexes des W; pour i = 1,...,n, est la somme
AW1 ++AW1L = {w1++wn | wq GAW1 yeee, Wh GAW"}.
Minkowski (voir [Ewal2]) a montré qu’étant donnés des objets convexes Ki,..., K, dans R" et
des nombres positifs A1, ..., A,, la fonction Vol(A\ K7 + -+ + A, K,) est un polynéme homogene
en A, ..., A, de degré n. Donc il existe des coefficients V(K;,,..., K, ) pour i1,...,i, € [n] tels
que
Vol(MKy + -+ MKn) = Y V(Ki, . Ki)Ai  A (7.2.3)

1,000 €[]

Le volume mixte MV(K3,...,K,) de Ki,..., K, est égal & V(Ki,...,K,). On donne main-
tenant la généralisation faite par Bernstein du Théoreme de Kushnirenko.

Théoréme 7.3 (Bernstein). Un systéme de n polynémes en n variables dont les supports sont
Wi, ..., W, admet au plus MV (A, ..., Aw. ) solutions isolées dans (C*)", et exactement ce
nombre lorsque les polynomes sont génériques pour leurs supports donnés.

Il est important de noter qu'une solution non dégénérée d’un systeme est une solution isolée.
Les théoremes de Kuschnirenko et de Bernstein donnent des majorations optimales pour le nombre
de solutions non-dégénérées dans (C*)™ d’un systeéme polynomial. Bien que le degré et les bornes
polyédrales précédentes sont aussi valables pour le nombre de solutions non-dégénérées dans (R*)",
les bornes résultantes ne sont pas toujours optimales. Cela se produit généralement lorsque le
support total W de admet peu d’éléments relativement a Ay N Z".

7.2.2 Bornes Fewnomiales

Notons par W C R™ le support de . Les généralisations multivariées de la borne de
Descartes (Théoréme pour les systemes polynomiaux multivariés sont appelés bornes Fewno-
mialesﬂ Une attention particuliere est portée aux solutions positives de , qui sont les solu-
tions contenues dans 'orthant positif de R™. En effet, supposons qu’il existe une borne supérieure
optimale Nyy sur le nombre de solutions positives non dégénérées de qui ne dépend que de
W. Alors Nyy majore aussi le nombre de solutions contenus dans tout autre orthant, et donc
n’aura pas plus que 2™ Ny solutions dans (R*)™. Rappelons que Descartes a montré que nous avons
Ny, = [W| — 1 pour n = 1, mais encore, avant le livre de Khovanskii [Kho91], ce n’était pas clair
qu’un tel Nyy existe pour n > 2.

Théoréme 7.4 (Khovanskii). Un systéme de n polynomes réels en n variables et comprenant
n+ k+ 1 monodomes distincts a moins que

n+k

2("2") (n + 1)t (7.2.4)
solutions positives non dégénérées.

L’existence d’une borne sur le nombre de solutions positives non dégénérées qui est indépendante
des degrés des polynomes était révolutionnaire et est le point central du résultat de Khovanskii.

Le terme “Fewnomial” a été inventé par A. Kushnirenko, ou il a remplacé le terme “poly” du mot
“polynomial”, par le terme “Few” (voir [Kus08])
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Elle confirme également le principe de Kushnirenko que la complexité topologique d’objets définis
par des polynomes a coefficients réels peut étre controlé par la complexité de la définition de ces
polynomes plutot que par les degrés ou polyedres de Newton associés aux équations.

En outre, la borne du Théoreéme [7.4] n’est pas optimale. En fait Théoréme [7-4] est un cas
particulier d’un résultat plus général de Khovanskii concernant des solutions dans R™ de fonctions
polynomiales en logarithmes des coordonnées et des mondmes (voir [Kho91]). Par exemple, lorsque
k = 0, le support W du systéme est un simplexe, et il y aura au plus une solution réelle. Bien
qu'il ait été communément admis que la borne de Khovanskii était loin d’étre optimale, il
s’avere que la tache d’améliorer cette borne n’est pas facile.

La théorie des Fewnomials a été principalement initiée par la célebre conjecture de Kushnirenko
qui a été formulée a la fin des années soixante-dix comme une tentative de généraliser la borne de
Descartes.

Conjecture 7.1 (Kushnirenko). Un systéme de n polynomes réels en n variables, dont les polynomes
ont supports Wi, ..., Wy, admet au plus

n

[Towil -1

i=1
solutions positives non dégénérées.

Ce n’est pas une tache difficile de construire des systemes polynomiaux atteignant la borne
conjecturée par Kushnirenko. Notamment, une telle construction pourrait étre par exemple un
systeme

gi(zi) =0, pour i=1,...,n

comprenant des polynomes en une variable, ou chaque g; admet m; termes et m; — 1 solutions
positives non dégénérées (borne de Descartes). En fait, le manque de méthodes de construction
efficaces a probablement incité Kushnirenko a établir sa conjecture.

7.3 Résultats avant la these

Apres le fameux Théoreme de Khovanskii, de nombreuses contributions récentes consacrées a
la théorie des Fewnomials ont eu lieu, (voir [Sotll] pour une enquéte). Dans cette section, nous
donnons juste quelques résultats parmi des nombreux autres développés dans ce millénaire. La
plupart de ces résultats seront ensuite étudiés et dans certains cas améliorés dans cette these.

7.3.1 Autour de la borne de Khovanskii
Considérons un systeme polynomial réel
fi(z) == falz) =0 (7.3.1)

en n variables, supporté par un ensemble W C Z" tel que |W| =n + k + 1 pour un certain k > 1.
Dans [BSOT], F. Bihan et F. Sottile ont réduit de maniére significative la borne fewnomiale de
Khovanskii ((7.2.4) en montrant qu’il y a moins de

2 .
€ 232(’5)71’“ (7.3.2)
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solutions positives non dégénérées de . La méthode qu’ils utilisaient consiste a réduire le
systeme de départ en un systeme de k équations en k variables, appelé le transformé de Gale.
Ce transformé de Gale dépend de la configuration des vecteurs “Gale” duale aux exposants des
mondmes dans le systéme original (voir [BSO§|). Cette réduction donne que la borne supérieure
de la transformée de Gale est également vraie pour le nombre de solutions de . La borne
dans est également vraie pour les polyndomes avec des exposants réels. En outre, est
asymptotiquement optimale dans le sens qu’en fixant k, il existe des systémes avec O(n*) solutions
positives [BRSO0S].

La constante 6213 qui apparait dans est artificielle, son but est seulement de majorer une

expression plus compliquée. En outre, les auteurs de [BS07] estiment que le terme 2(2) dans (|7.3.2))
est considérablement exagérée. La borne dans est également vraie pour les polynémes avec
des exposants réels. Notons que lorsqu’on pose n = k = 2 dans , on obtient 26 - 3* = 5184.
Bien que la nouvelle borne 15 est une borne fewnomiale considérablement plus petite pour un
systéme avec n = k = 2, les auteurs de [BS07] affirment que la borne optimale est encore plus
petite. Le cas n = k = 2 est le premier cas ol nous ne savons pas grand-chose. En fait, avant cette
these, la premiere construction connue, donnant beaucoup de solutions positives non dégénérées
d’un systéme de deux polyndémes a deux variables avec cinq monomes était essentiellement celle de
B. Haas . Une telle construction donne cing solutions positives non dégénérées, et montre
que la borne supérieure optimale sur le nombre de solutions positives non dégénérées est supérieure
ou égale a 5. Dans ce qui suit, nous appellerons un systeme de deux équations a deux variables
avec cing monomes distincts un systeme de type n = k = 2.

7.3.2 Utilisation du patchwork combinatoire

Considérons un systéme

fie(z) = = fuu(2) =0, (7.3.3)

ott chaque polynéme est obtenu & partir d’un polynéme ) ¢, 2" de en multipliant chaque
monodme ¢,z par une puissance réelle de ¢, ou ¢t est un parametre positif qui sera pris tres proche
de zéro. Soit V(f;,) l'ensemble des zéros de f;, dans R". Pour tout ¢ € {£1}", considérons
l'orthant

(Ryg) :={xeR" | 2,6, >0 i=1,...,n},

et soit Vc(f; ) l'intersection de V(f;+) avec (Rso)°.

Le Théoréme de O. Viro affirme qu’on peut construire combinatoirement a la fois un espace Q.
et un complexe simplicial Z, C Q. tel que le couple (Q., Z.) est homéomorphe & ((Rx0)¢, Ve(fit))
pour ¢t > 0 suffisamment petit. A partir de cela, on peut récupérer (& homéomorphismes pres)
toute 'hypersurface V(f;+) (pour ¢t > 0 suffisamment petit) en recollant & la fois ses différentes
parties, et leurs espaces ambiants.

Cela été généralisé par B. Sturmfels [Stu94] pour toute intersection complete V(f1,) N---N
V(fs,t), avec s < n, étant donné que les exposants de ¢ sont “suffisamment génériques”. Lorsque
s = n, cette méthode peut étre utilisée pour construire des systéemes avec un beaucoup de solutions
positives non dégénérées et supports données. Récemment, F. Bihan [Bih14] a donné une borne
supérieure sur le nombre de solutions réelles non-dégénérées qui sont construits en utilisant la
généralisation de Sturmfels du Théoreme de Viro. Cette borne est obtenue en utilisant le volume
mixte discret des supports des f; ;. De plus, il a démontré que cette borne est plus petite que
celle donnée dans la conjecture de Kushnirenko (voir Sous-section @ Lorsque n = 2 et k = 1,
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le volume mixte discret n’est pas plus grand que 3 et la borne correspondante est optimale (voir
Sous-section . Lorsque n = k = 2, c’est facile de déduire par calcul que le volume mixte discret
n’est pas plus grand que 6 (voir Lemme dans le Chapitre @, et ce n’est pas connu si la borne
correspondante est optimale.

7.3.3 Systemes supportés sur des circuits

L’un des premiers cas non-triviaux apparait lorsque n > 2 et k = 1, et dans ce cas la, le support
W de est un ensemble de n + 2 points dans R™. F. Bihan [Bih07] a démontré que chaque
systeme polynomial supporté par tel VW admet au plus n + 1 solutions positives non-dégénérées
et que cette borne est optimale. En outre, si cette borne est atteinte, alors WV est minimalement
affinement dépendent, qui signifie que c’est un circuit dans R™. Les systémes polynomiaux sup-
portés par un circuit dans Z™ dont toutes les solutions complexes non dégénérées sont positives
ont été étudiés dans [Bih15] (un tel systéme est appelé maximallement positif). Comme résultat
principal, il est donné pour tout entier positif n une liste finie des circuits dans Z™ qui peuvent
supporter des systémes maximalement positifs & une action du groupe des transformations affines
inversibles de Z" pres.

F. Bihan et A. Dickenstein [BDI16] ont présenté la premiere version multivariée de la régle
de Descartes pour borner le nombre des solutions positives réelles non dégénérées d'un systeme
supporté par un circuit, en fonction de la variation de signe d’une suite associé aux vecteurs
d’exposants et aux coefficients donnés. Il est aussi démontré que la borne obtenue est optimale et
est reliée a la signature du circuit.

La premiere fois que les dessins d’enfant réels de Grothendieck, qui sont des graphes immergés
dans la sphere de Riemann, ont été utilisés dans le contexte fewnomials est due a F. Bihan [Bih07].
Notamment, il utilise des dessins d’enfant pour montrer 'exactitude de la borne n + 1 pour le
nombre de solutions positives d’un systéme supporté par un circuit YW C R™. Il a aussi démontré
en utilisant la méme technique, I'optimalité de cette borne pour le nombre des solutions réelles de
ces systemes. Il se trouve que, si I’on peut réduire un systéme fewnomial & une fonction polynomiale
rationnelle CP! — CP!, alors on peut espérer d’utiliser les dessins d’enfant réels d’une maniére
fructueuse afin d’étudier de pres le systeme original. Cette technique donne un point de vue
intéressant sur la construction de systemes polynomiaux avec un grand nombre de solutions réelles
(voir Chapitre 7 la caractérisation de tels systemes (voir Chapitre |5) et méme majorer le nombre
de solutions positives de systémes polynomiaux creux (voir Chapitre [4)).

La version de Sturmfels du patchwork combinatoire de Viro est encore une autre technique
efficace de la géométrie algébrique réelle qui peut étre utilisée pour construire des systemes poly-
nomiaux avec beaucoup de solutions réelles. Cette généralisation [Stu94] est pour les intersections
completes des hypersurfaces algébriques réelles. Parmi beaucoup d’autres utilisations dans le con-
texte des Fewnomials, citons le papier de K. Phillipson et J.-M. Rojas [PR13] ou il est construit
des systemes polynomiaux supportés par un circuit dans Z™ et avec n + 1 solutions positives non
dégénérés dans le cas de corps de base autres que R.

7.3.4 Autour de la conjecture de Kuschnirenko

Considérons un systeme (|7.3.1)), et pour ¢ = 1,...,n, notons par m; le nombre de points
contenus dans le support de f;. Rappelons que la Conjecture de Kushnirenko affirme que (|7.3.1))
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ne peut pas avoir plus de

solutions positives non dégénérées.

7.3.4.1 Premiers contre-exemples

La borne conjecturée n’est pas une borne sur le nombre de solutions positives isolées. W. Fulton
donna le contre-exemple suivant dans [Full3] (voir aussi [Stu02]). Considérons le systéme

H(21 — i)+ [z =) =0, z(2s—1)=0, z(zs—1)=0, (7.3.4)

oum > 5. La Conjecture de Kushnirenko prédit qu’un tel systéme admet au plus (dm+1—1)(2—
1)(2 — 1) = 4m solutions positives réelles. Cependant, il y a m? solutions positives de de la
forme (i,4,1), pour 4,5 € N* entre 1 et m.

Un cas particulier de la Conjecture de Kuchnirenko affirme que lorsque n = 2 et m; = my = 3,
le systeme admet au plus quatre solutions positives non dégénérées. Dans un effort pour
réfuter cette conjecture, Haas montra dans [Haa02] que

1021% + 115%° — 11y = 10y + 112% — 112 =0 (7.3.5)

admet cinq solutions positives non dégénérées. Bien avant, Konstantin A. Sevastyanov, un collegue
de Kushnirenko, a trouvé un contre-exemple similaire. Malheureusement, ce contre-exemple ne
semble pas avoir été retrouvé et, tragiquement, Sevastyanov est mort avant la publication de son
contre-exemple.

Il a été montré aprés dans [LRWO03], en utilisant une analyse au cas-par-cas, que lorsque n = 2
et m; = my = 3, la borne supérieure optimale sur le nombre de solutions positives non dégénérées
est cing. En outre, il est démontré dans le méme papier que si cette borne est atteinte, la somme
de Minkowski des polytopes de Newton A; et Ay associés est un hexagone.

Un systeme polynomial plus simple

2%+ (44/31)y® —y = y® + (44/31)2® — 2 = 0, (7.3.6)

qui aussi admet cinqg solutions réelles positives non dégénérées a été découvert par A. Dickenstein,
J.-M. Rojas, K. Rusek et J. Shih [DRROT7]. De plus, ils ont montré que tels systémes sont rares
dans le sens suivant. Ils étudient la variété discriminant des espaces des coefficients du systeme
polynomial

22 tay? —y=y* +bz? -z =0, (7.3.7)

avec les parametres (a, b, d), et montrent que les chambres (composantes connexes du complémentaire)
contenant les systemes avec le nombres maximal de solutions positive sont “petites”.



7.3. Résultats avant la thése 160

7.3.4.2 Un trindbme et un {-néme

Les systémes polynomiaux réels en deux variables
f=9=0, (7.3.8)

ol f admet ¢ > 3 termes non-nuls et g admet trois termes non-nuls ont été étudiés par T.Y. Li, J.-
M. Rojas and X. Wang [LRW03]. Ils ont démontré qu’un tel systéme, en permettant des exposants
réels, admet au plus 2 — 2 solutions positives isolées. L’idée est de substituer une variable du
t-néme en fonction de I'autre, et de réduire le systéeme & une fonction analytique en une variable

t

h(z) = Zaimk"(l — )l

i=1

ou tous les coefficients et exposants sont des réels. Le nombre de solutions positives de est
égal au nombre de solutions de h = 0 contenues dans ]0,1[. Les techniques principales utilisées
dans [LRWO3] sont une extension du Theoreme de Rolle et une récurrence qui comprend des
dérivées de certaines fonctions analytiques. En fait, les résultats de Li, Rojas et Wang [LRWO3]
sont plus généraux. Considérons un systeme polynomial

fi==fa=0 (7.3.9)

a n variables, ou les fonctions f1,..., f,_1 sont des trinomes et f,, admet ¢ monoémes distincts. Les
auteurs dans [LRW03] montrent que admet au plus n +n? + - - + nt~! solutions positives
non dégénérées.

La borne exponentielle 2! — 2 sur le nombre de solutions positives de a été récemment
raffinée par P. Koiran, N. Portier et S. Tavenas [KPTI15b] en une borne polynomiale. Ils ont
considéré une fonction analytique en une variable

t m
jzﬂﬁm (7.3.10)

ou tous les f; sont des polynomes réels de degrés au plus d et tous les exposants de f; sont
réels. En utilisant les Wronskians des fonctions analytiques, il a été démontré que le nombre de
solutions positives de dans un intervalle I (en supposant que f;(I) C]0,+oo]) est majoré
par tSE”d + 2tmd + t. Comme cas particulier (en considérant m = 2, d = 1 et I =|0,1|), ils
obtiennent que h(z) = 23:1 a;x% (1 — x)l admet au plus 2t3/3 + 5t racines dans 1.

7.3.4.3 Une courbe plane et une droite

Lorsque le trinéme g de est un polynome de degré un, la borne optimale sur le nombre de
solutions réelles non-dégénérées de est une fonction linéaire en t.

Notamment, M. Avendafio montra dans [AveQ9] que si un tel systéme n’admet pas un nombre
infini de solutions réelles, il admet au plus 6t — 6 solutions dans (R*)2, comptés avec multiplicités.
En particulier, il a démontré que le nombre de solutions positives non dégénérées de est
au plus 2¢ — 2. La méthode utilisée dans [Ave09] consiste & remplacer zo par az; + b dans
pour certains réels non-nuls a et b. De cette fagon, avec ’aide de la regle de Descartes appliquée
au polyndéme en une variable qui en résulte, on obtient finalement la borne 2t — 2.
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7.3.5 Autour d’une conjecture polynomiale-fewnomiale

A. Kushnirenko formula aussi la conjecture suivante (pour plus de détails sur le sujet, voir [Kus08]).
Considérons un systéme

f(z,y) =g(z,y) =0 (7.3.11)

de deux équations en deux variables, ol g est un polyndéme avec t monomes distincts, et f est un
polynome de degré d.

Conjecture 7.2. Le systeme (7.3.11) admet au plus N(d,t) solutions positives non dégénérées,
ot N(d,t) est une fonction ne dépendant que des nombres d et t.

Sevostyanov prouva en 1978 qu’une telle fonction N(d,t) existe. Pourtant, ce résultat (avec
son contre-exemple a la conjecture de Kushnirenko) ne fut jamais publié. Selon [Sot1l], ce résultat
fut une source d’inspiration pour Khovanskii pour développer la théorie des Fewnomials.

Evidemment, d’apres les bornes de Khovanskii et Bihan-Sottile, une telle fonction N(d,t)
existe, néanmoins comme est un cas tres particulier d'un systéeme générique , les
bornes et (qui sont exponentielles en d et t) peuvent étre trop larges. La borne de
M. Avendaio [Ave(9] montre que N(1,t) < 2t — 2, qui est en effet optimale au moins pour ¢ = 3
(voir [BEHIH]).

La plus petite borne inférieure jusqu’a présent pour toutes valeurs d et t a été découverte par P.
Koiran, N. Portier et S. Tavenas [KPTT15a]. Ils ont montré que admet au plus O(d3t+d*t3)
solutions réelles lorsque ce nombre est fini. De plus, si ’ensemble de solutions réelles est infini, il
admet au plus O(d®t + d*t3) composantes connexes.
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7.4 Résultats de la these

Nous divisons nos principaux résultats en quatre chapitres.

7.4.1 Chapitre (3} Intersection d’une courbe plane creuse avec une droite

Le chapitre [3[ est un travail en commun avec F. Bihan [BEH15]. Considérons un systéme

fla,y) =az+b-y=0, (7.4.1)

ot f € Rlx,y], admet ¢ termes non nuls. Dans le chapitre [3| tous les solutions dans (R*)? sont
comptées avec multiplicités. Cela revient a compter le nombre de racines réelles d’'un polynome
flz,ax +b), ot a,b € R et f € R[z,y] admet au plus ¢ termes non nuls. M. Avendafio montra
dans [Ave09, Théoréme 1.1] que admet au plus 6t — 4 solutions réelles comptées avec
multiplicités sauf pour les racine possibles 0 et —b/a. La question d’optimalité n’était pas abordé
dans [Ave(9] et cela fut la motivation du travail actuel. Nous montrons le résultat suivant.

Théoréme 7.5. Soit f € Rz, y] un polynéme ayant au plus t termes non nuls et soit a,b deux
nombres réels. On suppose que le polynome g(x) = f(x,ax + b) est non nul. Alors g admet au
plus 6t — 7 racines réelles comptées avec multiplicités sauf pour les racines éventuelles 0 et —b/a
qui sont comptés au plus une seule fois.

Les méthodes de démonstration de ce dernier résultat sont élémentaires, et constituent d’une
version raffinée de celles de [Ave(9]. Cela pourrait ressembler & une petite amélioration du résultat
principal de [Ave(9]. En fait, ce raffinement est non trivial, et la borne du Théoreme est
optimale au moins pour ¢t = 3.

Théoréme 7.6. Le nombre maximal de points d’intersections réels d’une droite réelle avec une
courbe plane réelle définie par un polynome ayant trois termes non nuls est onze.

Explicitement, la courbe réelle d’équation
—0.002404 zy'® 429 2543 + 23y =0 (7.4.2)

intersecte la droite réelle y = 2 + 1 en précisément onze points dans R2.

La stratégie pour construire cet exemple est d’abord de déduire de la preuve du Théoréme [7.5]
quelques conditions nécessaires sur les monoémes de 1’équation souhaitée. Ensuite, 'utilisation des
dessins d’enfant de Grothendieck d’une maniere nouvelle aide a tester la faisabilité de certains
monodmes, puisque cette méthode donne une représentation claire de la topologie du graphe de
x — f(z,z + 1). Finalement, des expérimentations sur un logiciel conduisent & une équation

précise ((7.4.2]).
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Figure 7.1: La courbe bleue représente le graphe de x — f(x,z + 1), et la droite rouge
représente ’axe des abscisses (des parties de la courbe sont zoomées pour plus de clarté.)

7.4.2 Chapitre [4: Points d’intersection positifs d’une courbe trinomiale
et d’une courbe t-nomiale

Considérons le systeme ou f admet t > 3 termes non nuls et g admet trois termes non
nuls. Supposons que le dernier systéme admet un nombre fini de solutions. Soit §(3,t) dénote le
nombre maximal de solutions positives non dégénérées de . On montre le résultat suivant
dans la Section

Théoréme 7.7. On a S(3,t) <3272 — 1.

Notons que puisque le nombre de solutions positives de deux trinémes en deux variables est
borné par cing (voir [LRW03]), la borne §(3,t) est optimale pour ¢ = 3. En outre, pourt =4,...,9,
cette nouvelle borne est plus petite que les bornes 2¢ — 2 et 2t3/3 + 5¢, obtenues dans [LRW03]
et [KPTI5D] respectivement, et montre par exemple que 6 < §(3,4) < 11.
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Rappelons qu’en exprimant un variable du trinéme g de (7.3.8) en fonction de lautre réduit
le systeme a une fonction analytique en une variable

h(zx) = Zaizki(l — )k,

i=1

Le nombre de solutions positives de est égal a celui de h = 0 contenus dans ]0,1[. On
démontre le théoréme en utilisant la méme approche que celle de [LRWO03| i.e. on considere
une récurrence faisant intervenir des dérivées de fonctions analytiques en une variable associées au
systeme . En commencant avec la fonction f; = h, a chaque étape 1 < i < t, on se retrouve
avec une fonction f; définie comme une certaine dérivée de f;_; multipliée par des puissances de
z et de (1 —z). En appliquant le Théoréme de Rolle & chaque f;, on peut borner le nombre de ses
racines contenues dans ]0, 1] en fonction des racines de f;—; dans le méme intervalle. Il apparait que
dans I’étape t — 2, on est réduit & borner le nombre de solutions dans ]0, 1] de I’équation ¢(z) = 1,

" 2%(1 — )P P(x)

Q(z) ’
a,B € Q, et ala fois P et @ sont des polyndmes réels de degrés au plus 2¢72 — 1.

La plus grande partie du Chapitre {d] est consacrée a la preuve dans la Section du résultat
suivant.

¢(r) =

Théoréme 7.8. On a f{z €]0,1] |¢p(x) =1} < deg P +deg@ + 2.

En choisissant m € N tel qu’a la fois ma et m/3 soient des entiers, on obtient alors une fonction
rationnelle ¢ := ¢™ : CP! — CP'. Les images inverses de 0, 1, co sont données par les racines
de P, Q, » — 1, ainsi que 0 et 1 (si a8 # 0). Ces images inverses son contenues dans le graphe
I':= o 1(RP) c CP!, qui est un exemple d’'un dessin d’enfant réel de Grothendieck. Beaucoup
de restrictions sur la topologie du graphe de ¢ apparaissent explicitement comme des restrictions
sur I' = ¢~ 1(RP!). Notamment, les points critiques de ¢ correspondent aux sommets de I'. Le
nombre de racines de ¢ — 1 dans |0, 1] est controlé par le nombre de certains types de points
critiques de ¢ appelées points critiques positifs utiles. En faisant une analyse fine sur I', on borne
le nombre de sommets correspondants a ces points critiques en fonction de deg P et deg ().

On consideére dans la Section [£.4] le cas t = 3 i.e. le cas de deux trinémes en deux variables.
Rappelons que lorsque le nombre maximal de solutions positifs est atteint, la somme de Minkowski
A1 + As est un hexagone (voir [LRW03]). Du point de vue des éventails normaux, ga signifie que
I’éventail normal de la somme de Minkowski A1 + Ao, qui est le raffinement commun des éventails
normaux de Ay et Ay, admet six cones 2-dimensionnels (et six cones 1-dimensionnels). On donne
des contraintes supplémentaires suivantes sur la somme de Minkowski de A; et Ay lorsque
admet cinq solutions positives. On dit que A; et Ay alternent si chaque cone 2-dimensionnel de
I’éventail normal de A7 contient un cone 1-dimensionnel de I’éventail normal de As ayant seulement
I'origine comme face commune. Une analyse plus fine de I' dans le cas ¢t = 3 nous permet d’obtenir
le résultat suivant.

Théoréme 7.9. Sile systéme (7.3.8) admet 5 solutions positives, alors Ay et Ay n’alternent pas.

Les triangles de Newton A; et Ay n’alternent pas veux dire qu’il existe deux arétes consécutives
de Ay + Ay qui sont des translatés de deux arétes consécutives de Ay ou bien de A,. Figure [7.2]
illustre ce théoréme pour le systeme (7.3.6]), et on fournit un autre exemple dans la Section
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Figure 7.2: Les polytopes de Newton, leurs somme de Minkowski et les éventails normaux

associées de ([7.3.6]).

7.4.3 Chapitre [5; Caractérisation des circuits supportant des systémes
polynomiaux avec le nombre maximal de solutions positives

Rappelons qu’un circuit YW C R™ est un ensemble de n + 2 points distincts minimalement
affinement dépendants. Une généralisation tres récente de la regle de Descartes a été développée
par F. Bihan et A. Dickenstein dans [BD16]. Ceci a donné des conditions sur a la fois le circuit
et la matrice des coefficients qui sont nécessaires pour que le systeme admette n + 1 solutions
positives non dégénérées. Plus précisément, les auteurs de [BD16] montrent que si un tel systéme
admet n 4+ 1 solutions positives non dégénérées, alors tous les mineurs maximaux de la matrice des
coefficients sont non nuls et toute relation affine Z?If Aiw; = 0 sur W admet le méme nombre (a
un écart de 1 si n est impair) de coefficients positifs que de coefficients négatifs. Dans le chapitre
on caractérise completement les circuits qui supportent des systémes polynomiaux ayant n + 1

solutions positives non dégénérées.

Théoréme 7.10. Un circuit W dans R™ supporte un systeme avec n + 1 solutions positives non
dégénérées si et seulement si il existe une bijection

{1,...,.n+2} — W
) —  w;

tel que chaque relation affine W peut s’écrire comme

S n+2
§ QWi = E Wi,
=1 s+1

ot s = [(n+2)/2] et tous les a;; sont des nombres positifs satisfaisant

s+r r+1

T
Zai< Zai<2ai pour r=1,...,s—1 si n estpar
i=1 i=1

1=s+1
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ou
r s+r+1 r+1
E a; < g a; < E a; pour r=1,....,s—1 st n estimpair.
=1 i=s+2 i=1

F. Bihan montra dans [Bih15] que si un circuit dans Z™ supporte un systéme maximalement
positif avec n + 1 solutions positives non dégénérées, alors ce circuit admet une relation affine
primitive (i.e. relation affine avec des coefficients entiers premiers entre eux) comme celle dans le
théoreme [7.10] avec a1 = apq2 = 1 et tous les autres coefficients sont égaux & deux. Ceci peut
étre vu comme une conséquence du théoreme (voir Exemple Section . En effet, si W
supporte un systéme maximalement positif avec n + 1 solutions positives non dégénérées, alors le
sous-groupe de Z™ engendré par W est Z™. En outre, si Z‘;:l oW = Z?:lz o,;w; est une relation
affine primitive, alors Y ;_, o; = ZZLQ a; =n+ 1 (voir [Bih15] pour plus de détails), ce qui avec
les inégalités du théoreme [7.10] implique les égalités voulues. Afin de démontrer le théoréme [7.10]
on peut se ramener au cas o YW C Z" (voir la premiere partie du Chapitre . On démontre la
partie “seulement si” du théoréme de la facon suivante. Considérons un systeme polynomial
supporté par un circuit en n équations a n variables qui admet le nombre maximal de solutions
positives non dégénérées. On lui associe en utilisant la dualité de Gale (voir Section une

function & une variable
n+1

So(y) = H Pi)\ia
i=1

ol P; est un polynoéme de degré 1 qui dépend des équations du systeme, Z?;Q Ai(w; —wp) =0 est
une relation linéaire entre les vecteurs w; — wq et les solutions positives non dégénérées du systeme
initial sont en bijection avec les solutions de ¢(y) = 1 contenues dans

A+:{y€R>O|Pi(y)>O, z:l,,n+1}

L’homogénisation de ¢ est une application rationnelle CP! — CP!, telle que 'image inverse de
RP! par cette homogénisation est le dessin d’enfant réel I' (voir le chapitre . Comme les valences
des sommets de I' sont controlées par les entiers \; et les racines de P; pour ¢ = 1,...,n+ 1, en
analysant I', on obtient les inégalités du théoreme [7.10

Les solutions de ¢(y) = 1 dans Ay sont les racines du polynéme de Gale

Gy =[[Pw- I[P (7.4.3)

Ai>0 Ai<0

dans le méme intervalle. Dans [PRI13| preuve du Lemme 1.8], K. Phillipson et J.-M. Rojas ont
construit des systemes polynomiaux supportés par un circuit dans Z" avec n+ 1 solutions positives
non dégénérées en utilisant les polynémes de Viro P, 4(y) = a; +1%b;, ou a;,b;,a € R, et t > 0 est
un parametre qui seras pris suffisamment petit. Ils appliquent la version de Sturmfels du patchwork
combinatoire de Viro développé dans [Stu94] qui comprend la subdivision mixte des polytopes de
Newton. Ici, on utilise aussi les polynomes de Viro P;;, et on regarde directement les racines
dans A des polynémes de Gale correspondants. Les inégalités dans Théoreme @ apparaissent
explicitement comme étant nécessaires pour construire des systémes polynomiaux supportés par
un circuit dans Z" avec n+ 1 solutions positives non dégénérées en utilisant les polynémes de Viro
Piﬂg.
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7.4.4 Chapitre [ Construire des systémes polynomiaux avec beaucoup
de solutions positives

La géométrie tropicale est un nouveau domaine des mathématiques qui se situe a la croisée de
domaines tels que la géométrie torique, la géométrie complexe ou réelle, et la combinatoire [Mik06),
MROS, [MST5]. 11 se trouve que la généralisation de Sturmfels du Théoreme de Viro peut étre
reformulée dans le contexte de la géométrie tropicale (voir [Mik04, Rul01]). Ce qui fait de la
géométrie tropicale un outil effectif pour construire des systémes polynomiaux avec un support
prescrit et avec beaucoup de solutions positives.

Rappelons que la meilleure borne fewnomiale connue sur le nombre de solutions positives non
dégénérées d’un systéeme polynomial réel de n équations en n variables supporté par un ensemble
de n+ k + 1 points ou k,n > 1, est égale a #f’Q(g)nk [BSO7]. En fait, le méme papier contient
la meilleure borne supérieure 15 lorsque n = & = 2. D’un autre c6té, les meilleures constructions
connues donnent 5 solutions positives non dégénérées (voir [Haa02]). La motivation derriere le
chapitre [6] est d’utiliser la version de Sturmfels du patchwork combinatoire de Viro, et autres
outils et résultats (voir Chapitre Sous—section développés dans la géométrie tropicale pour
construire un systéme de deux équations en deux variables et avec cing monoémes en total (un
systéme du type n = k = 2 en abrégé) ayant beaucoup de solutions positives.

Soit K le corps des séries de Puiseux generalisées localement convergentes

a(t) = Z at”,

reR

ot R C R est un ensemble bien ordonné et a(t) est une série complexe convergente pour ¢ > 0
suffisamment petit. Ceci est un corps algébriquement clos. Considérons le sous-corps RK de K
formés des séries de Puiseux généralisées réelles, qui veut dire que les . apparaissant dans a(t)
sont des nombres réels. On considere dans le chapitre |§|un systéme polynomial (de Laurent) creux

fi(z) = fa(2) = 0, (7.4.4)

dont les équations sont définies sur RK. On suppose que admet un nombre fini de solutions,
toutes non dégénérées. Un élément positif a(t) de K est un élément de RK* dont le coefficient du
terme de premier ordre est positif.

A un polynéme de Laurent f(z) = ZwEW cwz® € R[z], on associe un polyndme tropical

ferop(x) = ¢ Z val(cy)z™”,

weWw

ou val(c,,) est moins l'ordre (dans le sens classique) des séries de Puiseux c¢,,, et les opérations sont
les opérations tropicales (la somme est le max, et le produit est la somme classique). L’hypersurface
tropicale associée T est le lieux des coins de la fonction convexe linéaire par morceaux R"™ —
R", & + fiop(x). Par le Théoréme de Kapranov [Kap00] (voir Chapitre [2 Sous-section [2.2.2),
I’hypersurface tropicale T' coincide avec la cloture de

Val ({z € (K*)" | f(2) =0}),

ou Val est ’extension de la fonction val coordonnée par coordonnée. La partie positive de T est
la cloture de Val ({z € (RKso)™ | f(2) =0}).

Considérons maintenant encore les polynémes fi, fo € RK[zlﬂ, zQﬂ] définissant deux courbes
tropicales T;,T> C R?. Supposons pour le moment que T} et Th s’intersectent transversalement,
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ce qui signifie que chaque point d’intersection est isolé et contenu dans l'intérieur relatif d’une
piece linéaire 1-dimensionnelle de T} et une autre piece linéaire 1-dimensionnelle de T5. Alors
par la généralisation de Sturmfels du Théoreme de Viro, chaque point d’intersection de T et T5
contenu dans les deux parties positives (point d’intersection positif en bref) se remonte & une
unique solution de dans (RK+¢)?, ce qui donne des solutions positives d'un systéme réel
g1(2) = g2(2) = 0 en prenant ¢ > 0 suffisamment petit. Rappelons que dans le cas oi n = k = 2
(ce qui signifie que les équations de Ty et T» ont en total cing mondmes), le nombre de points
d’intersections transverses de T; et Th est majoré par six (voir Sous-section . On démontre que
cette borne est optimale et peut étre réalisée par des points d’intersections positifs.

Proposition 7.3. Il existe deux courbes tropicales planes Ty et Ty définies par des équations ayant
cing monémes distincts au total et qui ont siz points d’intersections transverses positifs.

Par conséquent, en utilisant la généralisation de Sturmfels de la Théoréme de Viro (comme
expliqué au dessus), ceci donne un systéme de type n = k = 2 admettant six solutions positives
non dégénérées. Afin d’obtenir un systeme de type n = k = 2 avec plus que six solutions posi-
tives non dégénérées, on considere donc des courbes tropicales 17 et T» qui ne s’intersectent pas
transversalement.

Notons que 77 N 75 est linéaire par morceaux et ses pieces linéaires sont soit des point isolés,
soit des segments. Heureusement, si une piece linéaire & C 77 N T, est un point isolé, alors
les résultats de [Kat09, Rab12, (OP13] et [BLAM12] montrent que £ se remonte en des solutions
de dans (K*)2. Les solutions positives non dégénérées de dont la valuation est
égale a & peuvent étre estimées en calculant le systéme réduit réel de par rapport a £ (voir
Chapitre [2| Sous-section . Par contre, si cette piece linéaire ¢ a une dimension égale a 1,
alors £ est un ensemble infini contenant un ensemble fini (éventuellement vide) de points qui sont
les valuations des solutions positives non dégénérées de . Ce n’est pas facile de localiser
ces valuations. En fait, la seule méthode pour accomplir cette tache, est appelée la modification
tropicale (voir [Mik06, BLAM12]). Ce probléme est traité dans la section du chapitre |§| en
utilisant une autre approche. Notamment, pour chaque piece linéaire ¢ de dimension 1, on associe
un polynéme de Viro f;¢ tel que tous les termes de premier ordre des solutions positives non
dégénérées de de valuation dans I'intérieur relatif de £ peuvent étre récupérés par le systeme
réduit par rapport a ¢ et le polynoéme de Viro f; ¢.

On considere maintenant le systéeme de type n = k = 2. Supposons qu’il n’existe pas
une droite dans R? contenant trois points du support du systéme. On montre dans la section
qu’on peut associer & ce systéme un nouveau systéme

ap + Yy + agyyy” + aszt®y " yy® 0, (7.45)
bO + y'inl + be;nz y;m + b4tﬁy;n4yg4 _ 07 4.

dont les polynémes sont dans RK[ylﬂ,yzﬂ], qui a le méme nombre de solutions positives non

dégénérées que (7.4.4)), et satisfaisant que l'ordre de tous les a;, b; est nul, tous les m;, n; apparti-
ennent a Z avec my,ns > 0, et «, 8 sont des nombres réels.
Les deux résultats principaux du chapitre [f] sont les suivants.

Théoreme 7.11. Si (o, 3) # (0,0), alors (7.4.5) admet au plus neuf solutions positives non
dégénérées.

Nous démontrons le théoréme dans la section Notons que si (a, 8) = (0,0), alors on
peut rien faire si on veut utiliser la géométrie tropicale. En effet, le probléme de borner le nombre de
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solutions positives non dégénérées de ([7.4.5)) revient alors & borner le nombre de solutions positives
d’un systeme polynomial réel de type n = k = 2.

Théoréme 7.12. [l existe un systeme (7.4.5)) ayant sept solutions positives non dégénérées .

La construction d’'un systéme ((7.4.5) qui admet sept solutions positives non dégénérées est
effectué dans la section Notamment, pour tout 0 < a < 7, le systeme

1+ +yiys —tyr Myl = 0,

(7.4.6)
—1+40.36008t™ + % + (1 — 0.36008t%)y>yS — (44/31) %ty 2y 0,

admet sept solutions positives non dégénérées.

On a effectué une analyse au cas par cas pour obtenir des conditions nécessaires pour que
admet plus que six solutions positives non dégénérées. En particulier, on a obtenu dans les Sec-
tions [6.6] et [6.7 le résultat suivant.

Théoreme 7.13. Si (o, 3) # (0,0), et l'une des conditions suivantes est vraie

1. Pouri=0,2, le coefficient du terme de premier ordre de a; est différent de celui de b;,

2. a#B,

3. a=p0p<0,

alors (7.4.5) admet au plus siz solutions positives non dégénérées.
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