↵
The tropical non-properness set of a polynomial map,
Discrete and Computational Geometry (2024)
doi.org/10.1007/s 00454-024-00684-4
ArXiv: 2207.00989
with Georg Grasegger and Niels Lubbes
Coupler curves of moving graphs and counting realizations of rigid graphs,
Mathematics of Computations vol. 93, no. 345, pp. 459-504 (2024)
doi.org/10.1090/mcom/3886
ArXiv: 2205.02612
with Elias Tsigaridas
Computing the non-properness set of real polynomial maps in the plane,
Vietnam Journal of Mathematics (2023)
doi.org/10.1007/s10013-023-00652-0
ArXiv: 2101.05245
Counting isolated points outside the image of a polynomial map,
Advances in Geometry, vol. 22, no. 3 (2022), pp. 355-374
doi:10.1515/advgeom-2021-0042
ArXiv: 1909.08339
A note on generic polynomial maps having a fiber of maximal dimension,
Colloquium Mathematicum, vol. 166 (2021), pp. 129-136
doi.org/10.4064/cm8162-8-2020
ArXiv: 1910.01333
with Johannes Rau
Signed counts of real simple rational functions,
Journal of Algebraic Combinatorics, vol. 52 (2020), pp. 369-403
doi.org/10.1007/s10801-019-00906-6
ArXiv: 1712.05639
Constructing polynomial systems with many positive solutions using tropical geometry,
Revista Matematica Complutense Vol. 31, no. 2 (2018), pp. 525--544
doi.org/10.1007/s13163-017-0254-1
ArXiv: 1703.02272
Characterization of circuits supporting polynomial systems with the maximal number of
positive solutions,
Journal of Discrete & Computational Geometry, vol. 58, no. 2 (2017), pp. 355–370
doi.org/10.1007/s00454-017-9897-4
ArXiv: 1603.01813
with Frédéric Bihan
A sharp bound on the number of real intersection points of a sparse plane curve with a line,
Journal of Symbolic Computations, vol. 81 (2017), pp. 88–96
doi.org/10.1016/j.jsc.2016.12.003
ArXiv: 1506.03309
with Martin Helmer and Elias Tsigaridas
Stratification of projection maps from toric varieties,
ArXiv: 2408.08991
with Elias Tsigaridas
Bounds on the infimum of polynomials over a generic semi-algebraic set using asymptotic critical values,
ArXiv: 2407.17093
The tropical discriminant of a polynomial map on a plane
ArXiv: 2202.05052
Describing the Jelonek set of polynomial maps via Newton polytopes
ArXiv: 1909.07016
Counting positive intersection points of a trinomial and a t-nomial curves via Grothendieck’s dessins d’enfant
ArXiv: 1512.05688